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Abstract

Electrical Impedance Tomography (EIT) is a powerful imaging technique with diverse ap-
plications, e.g., medical diagnosis, industrial monitoring, and environmental studies. The EIT
inverse problem is about inferring the internal conductivity distribution of an object from mea-
surements taken on its boundary. It is severely ill-posed, necessitating advanced computational
methods for accurate image reconstructions. Recent years have witnessed significant progress,
driven by innovations in analytic-based approaches and deep learning. This review comprehen-
sively explores techniques for solving the EIT inverse problem, focusing on the interplay between
contemporary deep learning-based strategies and classical analytic-based methods. Four state-
of-the-art deep learning algorithms are rigorously examined, including the deep D-bar method,
deep direct sampling method, fully connected U-net, and convolutional neural networks, harness-
ing the representational capabilities of deep neural networks to reconstruct intricate conductivity
distributions. In parallel, two analytic-based methods, i.e., sparsity regularisation and D-bar
method, rooted in mathematical formulations and regularisation techniques, are dissected for
their strengths and limitations. These methodologies are evaluated through an extensive array
of numerical experiments, encompassing diverse scenarios that reflect real-world complexities. A
suite of performance metrics is employed to assess the efficacy of these methods. These metrics
collectively provide a nuanced understanding of the methods’ ability to capture essential features
and delineate complex conductivity patterns.

One novel feature of the study is the incorporation of variable conductivity scenarios, intro-
ducing a level of heterogeneity that mimics textured inclusions. This departure from uniform
conductivity assumptions mimics realistic scenarios where tissues or materials exhibit spatially
varying electrical properties. Exploring how each method responds to such variable conductivity
scenarios opens avenues for understanding their robustness and adaptability.

1 Introduction and motivation

This paper investigates deep learning concepts for the continuous model of electrical impedance tomography
(EIT). EIT is one of the most intensively studied inverse problems, and there already exists a very rich body
of literature on various aspects [14, 104]. EIT as an imaging modality is of considerable practical interest in
noninvasive imaging and non-destructive testing. For example, the reconstruction can be used for diagnostic
purposes in medical applications, e.g. monitoring of lung function, detection of cancer in the skin and breast
and location of epileptic foci [51]. Similarly, in geophysics, one uses electrodes on the surface of the earth or in
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boreholes to locate resistivity anomalies, e.g. minerals or contaminated sites, and it is known as geophysical
resistivity tomography in the literature.

Since its first formulation by Calderón [20], the issue of image reconstruction has received enormous
attention, and many reconstruction algorithms have been proposed based on regularised reconstructions, e.g.,
Sobolev smoothness, total variation and sparsity. Due to the severe ill-posed nature of the inverse problem
and the high degree of non-linearity of the forward model, the resolution of the obtained reconstructions
has been modest at best. Nonetheless, the last years have witnessed significant improvement in the EIT
reconstruction regarding resolution and speed. This impressive progress was primarily driven by recent
innovations in deep learning, especially deep neural network architectures, high-quality paired training data,
efficient training algorithms (e.g., Adam), and powerful computing facilities, e.g., graphical processing units
(GPUs).

This study aims to comprehensively and fairly compare deep learning techniques for solving the EIT
inverse problem. This study has several sources of motivation. First, the classical, analytical setting of EIT
is severely ill-posed, to such an extent that it allows only rather sketchy reconstructions when employing
classical regularisation schemes. Unless one utilises additional a priori information, there is no way around
the ill-posedness. This has motivated the application of learning concepts in this context. Incorporating
additional information in the form of typical data sets and ground truth reconstructions allows constructing
an approximation of a data manifold specific to the task at hand. The structures that distinguish these
manifolds are typically hard to capture by explicit physical-mathematical models. To some extent, TV-
or sparsity-based Tikhonov functionals exploit these features. However, learning the prior distribution from
sufficiently large sets of training data potentially offers much greater flexibility than these hand-crafted priors.
Second, there already exists a growing and rich body of literature on learned concepts for EIT; see, e.g., the
recent survey [65] and Section 3 for a detailed description of the state of the art. Nevertheless, most of these
works focus on their own approaches, typically showing their superiority compared to somewhat standard
and basic analytical methods. In contrast, we aim at a fair and more comprehensive comparison of different
learned concepts and include a comparison with two advanced analytical methods (i.e., D-bar and sparsity
methods).

It is worth mentioning that inverse problems pose a particular challenge for learned concepts due to their
inherent instability. For example, directly adapting well-established network architectures, which have been
successfully applied to computer vision or imaging problems, typically fail for inverse problems, e.g., medical
image reconstruction tasks. Hence, such learned concepts for inverse parameter identification problems are
most interesting in terms of developing an underlying theory and the performance on practical applications.
Indeed, the research on learned concepts for inverse problems has exploded over the past years, see e.g. the
review [5] and the references cited therein for a recent overview of the state of the art. Arguably, the two most
prominent fields of application for inverse problems are PDE-based parameter identification problems and
tasks in tomographic image reconstruction. These fields actually overlap, e.g. when it comes to parameter
identification problems in PDE-based multi-physics models for imaging. The most common examples in
tomography are X-ray tomography (linear) and EIT (non-linear). Hence, one may also regard this study
as being prototypical of how deep learning concepts should be evaluated in the context of non-linear PDE
inverse problems.

The rest of the paper is organised as follows. In Section 2, we describe the continuum model for EIT, and
also two prominent analytic-based approaches for EIT reconstruction, i.e., sparsity and D-bar method. Then,
in Section 3, we describe four representative deep learning-based approaches for EIT imaging. Finally, in
Section 4, we present an extensive array of experiments with a suite of performance metrics to shed insights
into the relative merits of the methods. We conclude with further discussions in Section 5.

2 Electrical impedance tomography

Mathematically speaking, the continuous EIT problem aims at determining a spatially-varying electrical
conductivity σ within a bounded domain Ω by using measurements of the electrical potential on the boundary
∂Ω. The basic mathematical model for the forward problem is the following elliptic PDE:

−div(σ∇u) = 0, in Ω, (1)
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subject to a Neumann boundary condition σ ∂u
∂n = j on ∂Ω, which satisfies a compatibility condition

∫
∂Ω
jdS =

0. An EIT experiment consists of applying an electrical current j on the boundary ∂Ω and measuring the
resulting electrical potential ϕ = u|∂Ω on ∂Ω. The Neumann to Dirichlet (NtD) operator Λσ,N : j 7→ ϕ maps
a Neumann boundary condition j to the Dirichlet data ϕ = u|∂Ω on ∂Ω.

In practice, several input currents are injected, and the induced electrical potentials are measured; see
[27, 57] for discussions on the choice of optimal input currents. This data contains information about the
underlying NtD map Λσ,N . The inverse problem is to determine or at least to approximate the true unknown
physical electrical conductivity σ† from a partial knowledge of the map. This inverse problem was first
formulated by Calderón [20], who also gave a uniqueness result for the linearised problem. The mathematical
theory of uniqueness of the inverse problem with the full NtD map Λσ,N has received enormous attention,
and many profound theoretical results have been obtained. For an in-depth overview of uniqueness results,
we refer to the monograph [55] and survey [104].

2.1 Theoretical background

This section introduces the mathematical model of the EIT problem and the discrepancy functional used
for reconstructing the conductivity σ. Let Ω be an open-bounded domain in Rd (d ≥ 2) with a Lipschitz
boundary ∂Ω, and let Λσ,N denote the NtD map of problem (1). We employ the usual Sobolev space for the

Neumann boundary data σ ∂u
∂n = j ∈ H̃− 1

2 (∂Ω), respectively Dirichlet boundary condition u = ϕ ∈ H̃
1
2 (∂Ω)

on ∂Ω. Throughout, we make use of the space H̃1(Ω), which is a subspace of the Sobolev space H1(Ω)

with vanishing mean on ∂Ω, i.e., H̃1(Ω) = {v ∈ H1(Ω) :
∫
∂Ω
vds = 0}. The spaces H̃

1
2 (∂Ω) and H̃− 1

2 (∂Ω)
are defined similarly. These spaces are equipped with the usual norms. We normalise the solution of the
Neumann problem by enforcing

∫
∂Ω
uds = 0, so that there exists a unique solution u ∈ H̃1(Ω). We denote

the Dirichlet-to-Neumann (DtN) map by Λσ,D. Then we have Λσ,N = Λ−1
σ,D, i.e., DtN and NtD maps are

inverse to each other. In usual regularised reconstruction, we employ the NtD map Λσ,N , whereas in the
D-bar method, we employ the DtN map Λσ,D.

An EIT experiment consists of applying a current j and measuring the resulting potential ϕ on ∂Ω, and
it is equivalent to solving a Neumann forward problem with the physical conductivity σ†, i.e. ϕ = Λσ,N j,
on ∂Ω. In practice, the boundary potential measurements are collected experimentally, and thus ϕ is only
an element of the space L2(Γ). see e.g. [22]. Note that the continuum model is mostly academic. A more
realistic model is the so-called complete electrode model (CEM) for EIT [100, 53], which models contact
impedances and localised electrode geometries. The CEM is finite-dimensional by construction, leading to
different mathematical challenges and reconstruction methods.

The solvability, uniqueness and smoothness of the continuum model with respect to Lp norms can be
derived using Meyers’ gradient estimate [80], as in [92].

Theorem 2.1. Let Ω be a bounded Lipschitz domain in Rd (d ≥ 2). Assume that σ ∈ L∞(Ω) satisfies
λ < σ < λ−1 for some fixed λ ∈ (0, 1). For f ∈ (Lq(Ω))d and h ∈ Lq(Ω), let u ∈ H1(Ω) be a weak solution of

−div(σ∇u) = −div(f) + h in Ω.

Then, there exists a constant Q ∈ (2,+∞) depending on λ and d only, Q → 2 as λ → 0 and Q → ∞ as
λ→ 1, such that for any 2 < q < Q, we obtain u ∈W 1,q

loc (Ω) and for any Ω1 ⊂⊂ Ω

∥u∥W 1,q(Ω1) ≤ C(∥u∥H1(Ω) + ∥f∥Lq(Ω) + ∥h∥Lq(Ω)),

where the constant C depends on λ, d, q, Ω1 and Ω.

In Theorem 2.1, the boundary condition for the problem can be general. Its effect enters theW 1,q-estimate
through the term ∥u∥H1(Ω). In addition, no regularity has been assumed on σ. Generally, a precise estimate
of the constant Q(λ, d) is missing, but in the 2D case, a fairly sharp estimate of Q(λ, d) was derived in [6].

2.2 Conventional EIT reconstruction algorithms

EIT suffers from a high degree of non-linearity and severe ill-posedness, as typical of many PDE inverse
problems with boundary data. However, its potential applications have sparked much interest in designing
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effective numerical techniques for its efficient solution. Numerous numerical methods have been proposed
in the literature; see [14, Section 7] for an overview (up to 2002). These methods can roughly be divided
into two groups: regularised reconstruction and direct methods. Below, we give a brief categorisation of
conventional reconstruction schemes.

The methods in the first group are of variational type, i.e., based on minimising a certain discrepancy
functional. Commonly the discrepancy J is the standard least-squares fitting, i.e., the squared L2(∂Ω) norm
of the difference between the electrical potential due to the applied current j and the measured potential ϕ:

J(σ) = 1
2∥Λσ,N j − ϕδ∥2L2(∂Ω),

for one single measurement (j, ϕδ). One early approach of this type is given in [28], which applies one
step of a Newton method with a constant conductivity as the initial guess. Due to the severe ill-posedness
of the problem, regularisation is beneficial for obtaining reconstructions with improved resolution [35, 94,
56]. Commonly used penalties include Sobolev smoothness [78, 58] for a smooth conductivity distribution,
total variation [50], Mumford-Shah functional [92], level set method [30] for recovering piecewise constant
conductivity, sparsity [40, 60, 59] for recovering small inclusions (relative to the background). The combined
functional is given by

Ψ(σ) = J(σ) + αR(σ),

where R(σ) denotes the penalty, and α > 0 is the penalty weight. The functional Ψ(σ) is then minimised
over the admissible set

A = {σ ∈ L∞(Ω) : λ ≤ σ ≤ λ−1 a.e. Ω},

for some λ ∈ (0, 1). The set A is usually equipped with an Lp(Ω) norm (1 ≤ p ≤ ∞). One may also
employ data fitting other than the standard L2(∂Ω)-norm. The most noteworthy one is the Kohn-Vogelius
approach, which lifts the boundary data to the domain Ω and makes the fitting in Ω [107, 69, 15]; see
also [67] for a variant of the Kohn-Vogelius functional. In practice, the regularized formulations have to be
properly discretized, commonly done by means of finite element methods [39, 91, 62, 61], due to the spatially
variable conductivity and irregular domain geometry. Newton-type methods have also been applied to EIT
[71, 72]. Probabilistic formulations of these deterministic approaches are also possible [64, 38, 34, 12], which
can provide uncertainty estimates on the reconstruction.

The methods in the second group are of a more direct nature, aiming at extracting relevant information
from the given data directly, without going through the expensive iterative process. Bruhl et al [18, 19]
developed the factorisation method for EIT, which provides a criterion for determining whether a point lies
inside or outside the set of inclusions by carefully analysing the spectral properties of certain operators. Thus,
the inclusions can be reconstructed directly by testing every point in the computational domain. The D-bar
method of Siltanen, Mueller and Isaacson [98, 82] is based on Nachman’s uniqueness proof [83] and utilises
the complex geometric solutions and nonphysical scattering transform for direct image reconstruction. Chow,
Ito and Zou [29] proposed the direct sampling method when there are only very few Cauchy data pairs. The
method employs dipole potential as the probing function and constructs an indicator function for imaging
the inclusions in EIT, and it is easy to implement and computationally cheap. Other notable methods in
the group include monotonicity method [47], enclosure method [54], Calderón’s method [11, 96], and MUSIC
[3, 2, 70] among others. Generally, direct methods are faster than those based on variational regularisation,
but the reconstructions are often inferior in terms of resolution and can suffer from severe blurring.

These represent the most common model-based inversion techniques for EIT reconstruction. Despite these
important progress and developments, the quality of images produced by EIT remains modest when compared
with other imaging modalities. In particular, at present, EIT reconstruction algorithms are still unable to
extract sufficiently useful information from data to be an established routine procedure in many medical
applications. Moreover, the iterative schemes are generally time-consuming, especially for 3D problems. One
possible way of improving the quality of information is to develop an increased focus on identifying useful
information and fully exploiting a priori knowledge. This idea has been applied many times, and the recent
advent of deep learning significantly expanded its horizon from hand-crafted regularisers to more complex
and realistic learned schemes. Indeed, recently, deep learning-based approaches have been developed to
address these challenges by drawing on knowledge encoded in the dataset or structural preference of the
neural network architecture.

We describe the sparsity approach and D-bar method next, and deep learning approaches in Section 3.
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2.3 Sparsity-based method

The sparsity concept is very useful for modelling conductivity distributions with “simple” descriptions away
from the known background σ0, e.g. when σ consists of an uninteresting background plus some small inclu-
sions. Let δσ† = σ† − σ0. A “simple” description means that δσ has a sparse representation with respect
to a certain basis/frame/dictionary {ψk}, i.e., there are only a few non-zero expansion coefficients. The ℓ1

norm δσ can promote the sparsity of δσ [33]

Ψ(σ) = J(σ) + α∥δσ∥ℓ1 , with ∥δσ∥ℓ1 =
∑
k

|⟨δσ, ψk⟩|. (2)

Under certain regularity conditions on {ψk}, the problem of minimising Ψ over the set A is well-posed [58].
Optimisation problems with the ℓ1 penalty have attracted intensive interest [33, 13, 17, 108]. The challenge

lies in the non-smoothness of the ℓ1-penalty and high-degree nonlinearity of the discrepancy J(σ). The basic
algorithm for updating the increment δσi and σi = σ0 + δσi by minimising Ψ formally reads

δσi+1 = Ssα(δσi − sΛ′∗
σi,N (Λσi,N j − ϕδ)),

where s > 0 is the step size, Λ′
σi,N

denotes the Gâteaux derivative of the NtD map Λσi,N in σ, and Sλ(t) =
sign(t)max(|t| − λ, 0) is the soft shrinkage operator. However, a direct application of the algorithm does
not yield accurate results. We adopt the procedure in Algorithm 1. The key tasks include computing the
gradient J ′ (Steps 4-5) and selecting the step size (Step 6).

Algorithm 1: Sparsity reconstruction for EIT.

Input: σ0 and α
Result: an approximate minimiser δσ

1 Set δσ0 = 0;
2 for i ← 1, . . . , I do
3 Compute σi = σ0 + δσi;
4 Compute the gradient J ′(σi);
5 Compute the H1

0 -gradient J
′
s(σi);

6 Determine the step size si;
7 Update inhomogeneity by δσi+1 = δσi − siJ

′
s(σi);

8 Threshold δσi+1 by Ssiα(δσi+1);
9 Check stopping criterion.

10 end

Gradient evaluation Evaluating the gradient J ′(σ) = −∇u(σ) · ∇p(σ) involves solving an adjoint problem

−∇ · (σ∇p) = 0, in Ω, with σ
∂p

∂n
u(σ)− ϕδ on ∂Ω.

Note that Indeed, J ′(σ) is defined via duality mapping J ′(σ)[λ] = ⟨J ′(σ), λ⟩L2(Ω), and thus J ′(σ) ∈ (L∞(Ω))′

may be not smooth enough. Instead, we take the H1
0 (Ω) metric for σ, by defining J ′

s(σ) via J ′(σ)[λ] =
⟨J ′

s(σ), λ⟩H1
0 (Ω). Integration by parts yields −∆J ′

s(σ) + J ′
s(σ) = J ′(σ) in Ω and J ′

s(σ) = 0 on ∂Ω. The
assumption is that the inclusions are in the interior of Ω. J ′

s is also known as Sobolev gradient [84] and
is a smoothed version of the L2(Ω)-gradient. It metrises the set A by the H1

0 (Ω)-norm, thereby implicitly
restricting the admissible conductivity to a smoother subset. Numerically, evaluating the gradient J ′

s(σ)
involves solving a Poisson problem and can be carried out efficiently. Using J ′

s, we can locally approximate
Ψ(σ) = Ψ(σ0 + δσ) by

Ψ(σ0 + δσ)−Ψ(σ0 + δσi) ∼ ⟨δσ − δσi, J
′
s(σi)⟩H1(Ω) +

1
2si

∥δσ − δσi∥2H1(Ω) + α∥δσ∥ℓ1 ,

which is equivalent to
1
2si

∥δσ − (δσi − siJ
′
s(σi))∥2H1(Ω) + α∥δσ∥ℓ1 . (3)

Upon identifying δσ with its expansion coefficients in {ψk}, the solution to problem (3) is given by

δσi+1 = Ssiα(δσi − siJ
′
s(σi)),
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This step zeros out small coefficients, thereby promoting the sparsity of δσ.
Step size selection Usually, gradient-type algorithms suffer from slow convergence, e.g., steepest descent
methods. One way to enhance its convergence is due to [10]. The idea is to mimic the Hessian with sI over
the most recent steps so that sI(δσi − δσi−1) ≈ J ′

s(σi)− J ′
s(σi−1) holds in a least-squares sense, i.e.,

si = argmin
s

∥s(δσi − δσi−1)− (J ′
s(σi)− J ′

s(σi−1))∥2H1(Ω).

This gives rise to one popular Barzilai-Borwein rule si = ⟨δσi − δσi−1, J
′
s(σi) − J ′

s(σi−1)⟩H1(Ω)/⟨δσi −
δσi−1, δσi − δσi−1⟩H1(Ω) [10, 32]. In practice, following [108], we choose the step length s to enforce a
weak monotonicity

Ψ(σ0 + Ssα(δσi − sJ ′
s(σi))) ≤ max

i−M+1≤k≤i
Ψ(σk)− τ

s

2
∥Ssα(δσi − sJ ′

s(σi))− δσi∥2H1(Ω),

where τ is a small number, andM ≥ 1 is an integer. One may use the step size by the above rule as the initial
guess at each inner iteration and then decrease it geometrically by a factor q until the weak monotonicity is
satisfied. The iteration is stopped when si falls below a prespecified tolerance sstop or when the maximum
iteration number I is reached.

The above description follows closely the work [59], where the sparsity algorithm was first developed.
There are alternative sparse reconstruction techniques, notably based on total variation [92, 39, 16, 112]. For
example, [16] presented an experimental (in-vivo) evaluation of the total variation approach using a linearized
model, and the resulting optimisation problem solved by the primal-dual interior point method; and the work
[112] compared different optimisers. Due to the non-smoothness of the total variation, one may relax the
formulation with the Modica-Mortola function in the sense of Gamma convergence [92, 61].

2.4 The D-bar method

The D-bar method of Siltanen, Mueller and Isaacson [98] is a direct reconstruction algorithm based on the
uniqueness proof due to Nachman [83]; see also Novikov [87]. That is, a reconstruction is directly obtained
from the DtN map Λσ,D, without going through an iterative process. Note that the DtN map Λσ,D can be
computed as the inverse of the measured NtD map Λσ,N when full boundary data is available. Below we
briefly overview the classic D-bar algorithm assuming σ ∈ C2(Ω), with a positive lower bound (i.e., σ ≥ c > 0
in Ω), and σ ≡ 1 in a neighbourhood of the boundary ∂Ω. In this part, we consider an embedding of R2

in the complex plane, and hence we will identify planar points x = (x1, x2) with the corresponding complex
number x1+ix2, and the product kx denotes complex multiplication. For more detailed discussions, we refer
interested readers to the survey [82].

First, we transform the conductivity equation (1) into a Schrödinger-type equation by substituting ũ =√
σu and setting q = ∆

√
σ/

√
σ and extending σ ≡ 1 outside Ω. Then we obtain

(−∆+ q(x))ũ(x) = 0, in R2. (4)

Next we introduce a class of special solutions of equation (4) due to Faddeev [36], the so-called complex
geometrical optics (CGO) solutions ψ(x, k), depending on a complex parameter k ∈ C\{0} and x ∈ R2. These
exponentially behaving functions are key to the reconstruction. Specifically, given q ∈ Lp(R2), 1 < p < 2,
the CGO solutions ψ(x, k) are defined as solutions to

(−∆+ q(x))ψ(·, k) = 0, in R2,

satisfying the asymptotic condition e−ikxψ(x, k)−1 ∈W 1,p̃(R2) with 2 < p̃ <∞. These solutions are unique
for k ∈ C \ {0} as shown in [83, Theorem 1.1]. Then D-bar algorithm recovers the conductivity σ from the
knowledge of the CGO solutions µ(x, k) = e−ikxψ(x, k) at the limit k → 0 [83, Section 3]

lim
k→0

µ(x, k) =
√
σ, x ∈ Ω.

Numerically, one can substitute the limit by k = 0 and evaluate µ(x, 0). The reconstruction of σ relies on
the use of an intermediate object called non-physical scattering transform t, defined by

t(k) =

∫
R2

ek(x)µ(x, k)q(x)dx,
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with ek(x) := exp(i(kx+ k̄x̄)), where over-bar denotes complex conjugate. Since µ is asymptotically close to
one, t(k) is similar to the Fourier transform of q(x). Meanwhile, we can obtain µ by solving the name-giving
D-bar equation

∂̄kµ(x, k) =
1

4πk̄
t(k)e−k(x)µ(x, k), k ̸= 0, (5)

where ∂̄k = 1
2 (

∂
∂k1

+ i ∂
∂k2

) is known as the D-bar operator. To solve the above equation, scattering transform
t(k) is required, which we can not measure directly from the experiment, but t(k) can be represented using
the DtN map. Indeed, using Alessandrini’s identity [1], we get the boundary integral

t(k) =

∫
∂Ω

eik̄x̄(Λσ,D − Λ1,D)ψ(x, k)ds.

Note that Λ1,D can be analytically computed, and only Λσ,D needs to be obtained from the measurements.
Here, we will employ a Born approximation using ψ ≈ eikx, leading to the linearised approximation

texp(k) ≈
∫
∂Ω

eik̄x̄(Λσ,D − Λ1,D)eikxds. (6)

This linearised D-bar algorithm can be efficiently implemented. First, one computes the texp(k) from the
measured DtN map Λσ,D, and then one solves the D-bar equation (5). Note that the solutions of (5) are
independent for each x ∈ Ω and one can efficiently parallelise over x. This leads to real-time implementations
and is especially relevant for time-critical applications, e.g., monitoring purposes. The fully nonlinear D-bar
algorithm would require first computing ψ by solving a boundary integral equation and then computing the
scattering transform t(k).

The above algorithm assumes infinite precision and noise-free data. When the data is noise corrupted
with finite measurements, the measured DtN map Λσ,D is not accurate, and then the computation of t(k)
becomes exponentially unstable for |k| > R. Thus, for practical data, we need to restrict the computations
to a certain frequency range so as to stably compute t(k). Below we choose R = 5 for noise-free data and
R = 4.5, R = 4 for 1% and 5% noisy measurements, respectively. This strategy of reducing the cut-off radius
for noisy measurements is shown to be a regularisation strategy [68]. The final algorithm can be summarised
as outlined below in Algorithm 2.

Algorithm 2: D-bar algorithm using texp

Input: Λσ,D and R
Result: Regularised reconstruction of σ

1 Compute analytic Λ1,D;
2 Evaluate texp(k) for |k| < R by (6);
3 Solve the D-bar equation (5);
4 Obtain σ(x) = µ(x, 0)2 for x ∈ Ω;

Besides the D-bar method, there are other analytic and direct reconstruction methods available, e.g.,
enclosure method [54], monotonicity method [47], direct sampling method [29], and Calderón’s method
[11, 96]. The common advantage of these approaches is their computational efficiency, but unfortunately,
also the directly inherited exponential instability to noise. While there are strategies to deal with noise,
e.g., reducing the cut-off radius, the reconstruction quality does suffer: the reconstructions tend to be overall
smooth. Additionally, there may be theoretical limitations to the reconstructions that can be obtained. For
example, for the classic D-bar algorithm, it is C2 conductivities, and for the enclosure methods, we can
only find the convex hull of all inclusions. Thus, it is very interesting to discuss how deep learning can help
overcome these limitations.

3 Deep learning-based methods

The integration of deep learning techniques has significantly advanced EIT reconstruction. It has successfully
addressed several challenges posed by the non-linearity and severe ill-posedness of the inverse problem, leading
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to improved quality and reconstruction accuracy. Researchers have achieved breakthroughs in noise reduction,
edge retention, and spatial resolution, making EIT a more viable imaging modality in medical and industrial
applications. This success is mainly attributed to the extraordinary approximation ability of DNNs and the
use of a large amount of paired training datasets.

First, much effort has been put into designing DNNs architectures for directly learning the maps from
the measured voltages U to conductivity distributions σ, i.e., training a DNN Gθ such that σ ≈ Gθ(U). Li et
al. [74] proposed a four-layer DNN framework constituted of a stacked autoencoder and a logistic regression
layer for EIT problems. Tan et al. [102] designed the network based on LeNet convolutional layers and
refined it using pooling layers and dropout layers. Chen et al. [26] introduce a novel DNN using a fully
connected layer to transform the measurement data to the image domain before a U-Net architecture, and
[110] a DenseNet with multiscale convolution. Fan and Ying [37] proposed DNNs with compact architectures
for the forward and inverse problems in 2D and 3D, exploiting the low-rank property of the EIT problem.
Huang et al. [52] first reconstruct an initial guess using RBF networks, which is then fed into a U-Net for
further refinement. [95], uses a variational autoencoder to obtain a low-dimensional representation of images,
which is then mapped to a low dimension of the measured voltages as well. We refer to [109, 73, 90, 25] for
more direct learning methods.

Second, combining traditional analytic-based methods and neural networks is also a popular idea. Ab-
stractly, one employs an analytic operator R and a neural network Gθ such that σ ≈ Gθ(R(U)). One example
is the Deep D-bar method [45]. It first generates EIT images by the D-bar method, then employs the U-Net
network to refine the initial images further. Along this line, one can design the input of the DNN from
Calderón’s method [21, 101], domain-current method [106], one-step Gauss-Newton algorithm [79] and con-
jugate gradient algorithm [111]. Inspired by the mathematical relationship between the Cauchy difference
index functions in the direct sampling method, Guo and Jiang [42] proposed the DDSM proposed in [42]
employs the Cauchy difference functions as the DNN input. Yet another popular class of deep learning-based
methods that combines model-based approaches with learned components is based on the idea of unrolling,
which replaces components of a classical iterative reconstructive method with a neural network learned
from paired training data (see [81] for an overview). Chen et al. [24] proposed a multiple measurement
vector (MMV) model-based learning algorithm (called MMV-Net) for recovering the frequency-dependent
conductivity in multi-frequency electrical impedance tomography (mfEIT). It unfolds the update steps of the
alternating direction method of multipliers for the MMV problem. The authors validated the approach on
the Edinburgh mfEIT Dataset and a series of comprehensive experiments. See also [23] for a mask-guided
spatial–temporal graph neural network (M-STGNN) to reconstruct mfEIT images in cell culture imaging.
Unrolling approaches based on the Gauss-Newton have also been proposed, where an iterative updating net-
work is learned for the explicitly computed Gauss-Newton updates [49] or a proximal type operator [31].
Likewise, a quasi-Newton method has been proposed by learning an updated singular value decomposition
[99]. One should further mention an excellent study on how to apply deep learning concepts for the particular
case of EIT-lung data [95], which sets the standards in terms of integrating mathematical as well as clinical
expertise into the learned reconstruction process.

Reconstruction methods in these two groups are supervised in nature and rely heavily on high-quality
training data. Even though there are a few public EIT datasets, they are insufficient to train DNNs (often
with many parameters). In practice, the DNN is learned on synthetic data, simulated with phantoms via,
e.g., FEM. The main advantage is that once the neural network is trained, at the inference stage, the process
requires only feeding through the trained neural network and thus can be done very efficiently. Generally,
these approaches perform well when the test data is close to the distribution of the training data. Still, their
performance may degrade significantly when the test data deviates from the setting of the training data [4].
This lack of robustness with respect to the out-of-distribution test data represents one outstanding challenge
with all the above approaches.

Third, several unsupervised learning methods have been proposed for EIT reconstruction. Bar et al. [9]
employ DNNs to approximate voltage functions {uj}Jj=1 and conductivity σ and then train them together
to satisfy the strong PDE conditions and the boundary conditions, following the physics-informed neural
networks (PINNs) [89]. Furthermore, data-driven energy-based models are imparted onto the approach to
improve the convergence rate and robustness for EIT reconstruction [88]. Bao et al. [8] exploited the weak
formulation of the EIT problem, using DNNs to parameterise the solutions and test functions and adopting
a minimax formulation to alternatively update the DNN parameters (to find an approximate solution of the
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EIT problem). Liu et al. [76] applied the deep image prior (DIP) [105], a novel DNN-based approach to
regularise inverse problems, to EIT, and optimised the conductivity function by back-propagation and the
finite element solver. Generally, the methods in this group are robust with respect to the distributional
shift of the test data. However, each new test data requires fresh training, and hence, they tend to be
computationally more expensive.

In addition, several neural operators, e.g., [77, 75, 103], have been designed to approximate mostly forward
operators. The recent survey [85] discusses various extensions of these neural operators for solving inverse
problems by reversed input-output and studied Tikhonov regularisation with a trained forward model.

3.1 Deep D-bar

In practice, reconstructions obtained with the D-bar method suffer from a smoothing effect due to truncation
in the scattering transform, which is necessary for finite and noisy data but leaves out all high-frequency
information in the data. Thus, we cannot reconstruct sharp edges, and subsequent processing is beneficial.
An early approach to overcome the smoothing is to use a nonlinear diffusion process to sharpen edges [46].
In recent years, deep learning has been highly successful for post-processing insufficient noise or artefact-
corrupted reconstruction [63].

In the context of the deep D-bar method, we are given an initial analytic reconstruction operator Rd-bar

that maps the measurements (i.e., the DtN map Λσ,D for EIT) to an initial image, which suffers from various
artefacts, primarily over-smoothing. Then a U-Net Gθ [93] is trained to improve the reconstruction quality of
the initial reconstructions, and we refer to the original publication [45] for details on the architecture. Thus,
we could write this process as σ ≈ Gθ(Rd-bar(Λσ,D)), where the network Gθ is trained by minimising the
ℓ2-loss of D-bar reconstructions to ground-truth images. Specifically, given a collection of N paired training
data {(σ†

i ,Λ
δ
σ†
i ,D

)}Ni=1 (i.e., ground-truth conductivity σ†
i and the corresponding noisy measurement data

Λδ
σ†
i ,D

), we train a DNN Gθ by minimising the following empirical loss

L(θ) = 1

N

N∑
i=1

∥σ†
i − Gθ(Rd-bar(Λ

δ
σ†
i ,D

))∥2L2(Ω),

This can be viewed as a specialised denoising scheme to remove the artefacts in the initial reconstruction
Rd-bar(Λ

δ
σ†
i ,D

) by the D-bar reconstructor Rd-bar. The loss L(θ) is then minimised with respect to the DNN

parameters θ, typically by the Adam algorithm [66], a very popular variant of stochastic gradient descent.
Once a minimiser θ∗ of the loss L(θ) is found, given a new test measurement Λδ

σ,D, we can obtain the

reconstruction Gθ∗(Rd-bar(Λ
δ
σ,D)). Thus at the testing stage, the method requires only additional feeding

of the initial reconstruction Rd-bar(Λ
δ
σ,D) through the network Gθ∗ , which is computationally very efficient.

This presents one distinct advantage of a supervisedly learned map.
Several extensions have been proposed. Firstly, the need to model boundary shapes in the training data

can be eliminated by using the Beltrami approach [7] instead of the classic D-bar method. This allows for
domain-independent training [44]. A similar motivation is given by replacing the classic U-net that operates
on rectangular pixel domains with a graph convolutional version; this way learned filters are domain and
shape-independent [49, 48]. Similarly, the reconstruction from Calderón’s method [11, 96] can be post-
processed using U-net, leading to the deep Calderón’s method [21]. Distinctly, the deep Calderón’s method is
capable of directly recovering complex valued conductivity distributions. Finally, even the enclosure method
can be improved by predicting the convex hull from values of the involved indicator function [97].

3.2 Deep direct sampling method

The deep sampling method (DDSM) [42] is based on the direct sampling method (DSM) due to Chow, Ito
and Zou [29]. Using only one single Cauchy data pair on the boundary ∂Ω, The DSM constructs a family of
probing functions {ηx,dx}x∈Ω,dx∈Rn ⊂ H2γ(∂Ω) such that the index function defined by

I(x, dx) :=
⟨ηx,dx

, u− uσ0
⟩γ,∂Ω

∥u− uσ0
∥L2(∂Ω)|ηx,dx

|Y
, x ∈ Ω, (7)
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takes large values for points near the inclusions and relatively small values for points far away from the
inclusions, where | · |Y denotes the H2γ(∂Ω) seminorm in and the duality product ⟨f, g⟩γ,∂Ω is defined by

⟨f, g⟩γ,∂Ω =

∫
∂Ω

(−∆∂Ω)
γfgds = ⟨(−∆∂Ω)

γf, g⟩L2(∂Ω), (8)

where −∆∂Ω denotes the Laplace-Beltrami operator, and (−∆∂Ω)
γ its fractional power via spectral calculus.

Let the Cauchy difference function φ be defined by

−∆φ = 0 in Ω,
∂φ

∂n
= (−∆∂Ω)

γ(uσ − uσ0
) on ∂Ω,

∫
∂Ω

φds = 0. (9)

Then the index function I(x, dx) can be equivalently rewritten as

I(x, dx) :=
dx · ∇φ(x)

∥uσ − uσ0∥L2(∂Ω)|ηx,dx |Y
, x ∈ Ω, (10)

Motivated by the relation between the index function I(x, dx) and the Cauchy difference function φ and
to fully make use of multiple pairs of measured Cauchy data, Guo and Jiang [42] proposed the DDSM,
employing DNNs to learn the relationship between the Cauchy difference functions φ and the true inclusion
distribution. That is, DSSM construct and train a DNN Gθ such that

σ ≈ Gθ(φ1, φ2, ..., φN ), (11)

where {φi}Ni=1 correspond to N pairs of Cauchy data {gℓ,Λσ,Ngℓ}Nℓ=1. Guo and Jiang [42] employed a CNN-
based U-Net network for DDSM, and later [41] designed a U-integral transformer architecture (including
comparison with state-of-the-art DNN architectures, e.g., Fourier neural operator, and U-Net). In our nu-
merical experiments, we choose the U-Net as the network architecture for DDSM as we observe that U-Net
can achieve better results than the U-integral transformer for resolution 64× 64. For higher resolution cases,
the U-integral transformer seems to be a better choice due to its more robust ability to capture long-distance
information. The following result [42, Theorem 4.1] provides some mathematical foundation of DDSM.

Theorem 3.1. Let {gℓ}∞ℓ=1 be a fixed orthonormal basis of H−1/2(∂Ω). Given an arbitrary σ such that
σ > σ0 or σ < σ0, let {gℓ,Λσ,Ngℓ}∞ℓ=1 be the Cauchy data pairs and let {φℓ}∞ℓ=1 be the corresponding Cauchy
difference functions with γ = σ0. Then the inclusion distribution σ can be purely determined from {φℓ}∞ℓ=1.

The idea of DDSM was extended to diffusive optical tomography in [43]. Ning et al. [86] employ the index
functions obtained from the DSM as the input of the DNN for solving inverse obstacle scattering problems.

3.3 CNN based on LeNet

Li et al. [74] proposed using CNN to directly learn the map from the measured data and the conductivity
distribution. The employed network architecture is based on LeNet and refined by applying dropout layer
and moving average. The CNN architecture used in the numerical experiments below is shown in Fig. 1.
Since the number of injected currents and the discretisation size differ from that in [74], we modify the input
size, network depth, kernel size, etc. The input size is 32 × 64. The kernel size is 5 × 5 with zero-padding
max pooling rather than average pooling is adopted to gain better performance. The sigmoid activation
function used in LeNet causes a serious saturation phenomenon, which can lead to vanishing gradients. So,
ReLU is chosen as the activation function below. A dropout layer is added to improve the generalisation
ability of this model. One-half of the neurons before the first fully connected layers are randomly discarded
from the network during the training process. It can reduce the complex co-adaptation among neurons so
that the network can learn more robust features. In addition, a dropout layer has been proven to be very
effective in training large datasets.

3.4 FC-UNet

Chen et al. [26] proposed a novel deep learning architecture by adding a fully connected layer before the
U-Net structure. The input of the network is given by the difference voltage uδσ−uσ0

. Inspired by a linearized
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Figure 1: The architecture of CNN-based on LeNet.

approximation of the EIT problem for a small perturbation of conductivity distribution σ − σ0:

uδσ − uσ0 ≈ J(σ − σ0), (12)

where J donates the sensitivity matrix, the method first generates an initial guess of the conductivity dis-
tribution σ from the linear fully connected(FC) layer followed by a ReLU layer and then feeds it to a
denoising U-Net model to learn the nonlinear relationship further. Thus we could write this process as
σ ≈ Gθ(u

δ
σ − uσ0

) = Gθ2(Gθ1(u
δ
σ − uσ0

)) with Gθ1 = FC+ReLU and Gθ2 = U-Net. The authors also proposed
an initialisation strategy to further help obtain the initial guess, i.e., the weights θ1 of the fully connected
layer are initialised with the least-squares solution using training data. The weights θ2 for the U-Net are ini-
tialised randomly as usual. Then, all weights θ = θ1 ∪ θ2 are updated during the training process. According
to the numerical results shown in [26], this special weight initialization strategy can reduce the training time
and improve the reconstruction quality. With a trained network, different from the deep D-bar and DDSM
methods, the methods FC-UNet and CNN based on LeNet only involve a forward pass of the trained network
for each testing example.

Based on our numerical experience, dropping the ReLU layer following the fully connected layer can pro-
vide better reconstruction results, at least for the examples in section 4. Thus, for the numerical experiments,
we employ the FC-UNet network as shown in Fig. 2, in which only a linear fully connected layer is employed
before the U-Net.

In addition, by employing the FC-UNet to extract structure distribution and a standard CNN to extract
conductivity values, a structure-aware dual-branch network was designed in [25] to solve EIT problems.

Figure 2: The architecture of FC-UNet.
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4 Numerical experiments and results

The core of this work is the extensive numerical experiments. Now, we describe how to generate the dataset
used in the experiments, highlighting its peculiarity and relevance in real-world scenarios, and also the
performance metrics used for comparing different methods. Last, we present and discuss the experimental
results.

4.1 Dataset generation and characteristics

Generating simulated data consists of three main parts, which we describe below. The codes for data
generation are available at https://github.com/dericknganyu/EIT_dataset_generation.

In the 2D setting, we generate N circular phantoms {Pi i = 1N , all restricted to the unit circle centred at
the origin, i.e., Ω = {(x, y) : x2 + y2 ≤ 1} in the Cartesian coordinates or {(r, θ) : r ≤ 1, θ ∈ [0, 2π]} in polar
coordinates. The phantoms are generated randomly. Firstly, we decide on the maximum number M ∈ N of
inclusions. Each phantom would then contain n inclusions, where n ∈ U{1, . . . ,M}, the uniform distribution
over the set [1, . . . ,M ]. To mimic realistic scenarios in medical imaging, the inclusions are elliptical and
are sampled such that when n > 1, the inclusions do not overlap. Since the inclusions are elliptical, each
inclusion, (Ej)

n
j=1 is characterised by a centre Cj = (hj , kj), an angle of rotation αj , a major and minor axis

aj and bj respectively. The parametric equation of an ellipse Ej is thus given by

Ej =

{
(x, y) :

(
x
y

)
=

(
hj + aj cos θ cosαj − bj sin θ sinαj

kj + aj cos θ sinαj + bj sin θ cosαj

)
, θ ∈ [0, 2π]

}
. (13)

To mimic realistic scenarios in medical imaging, the inclusions are sampled to avoid contact with the boundary
∂Ω of the domain Ω. For an inclusion Ej , we have x

2+y2 < 0.9 for any (x, y) ∈ Ej . In this way, all phantoms
have inclusions contained within Ω. We illustrate this in Algorithm 3.

Each phantom Pi, i ∈ {1, 2, . . . , N}, has (Ej)
n
j=1 inclusions, with n ∈ U{1, . . . ,M}. For each Ej , we assign

a conductivity σi
j ∈ Σj := U(0.2, 0.8) ∪ U(1.2, 2.0). The background conductivity is set to 1. In this way,

given a point (x, y) ∈ Pi in the domain/phantom, the conductivity σi(x, y) at that point is therefore given
by

σi(x, y) =

{
σi
j ∈ Σj , if (x, y) ∈ Ej , j = 1, . . . , n

1, otherwise.
(14)

Fig. 3b shows an example of a phantom generated in this way.
Next, for any simulated σ, we solve the forward problem (1) using the Galerkin finite element method

(FEM) [71, 39], for the injected currents g1 and g2 in (15) around the boundary ∂Ω. The points (x, y) ∈ Pi

are thus nodes in the finite element mesh shown in Fig. 3a

g1 = π−1/2 sin(nθ) and g2 = π−1/2 cos(nθ), n = 1, 2, . . . , 16 (15)

We use the MATLAB PDE toolbox in the numerical experiment to solve the forward problem.

(a) Forward solver FEM mesh. (b) Constant σi
j

∣∣3
j=1

inclusions. (c) Textured σi
j

∣∣3
j=1

inclusions.

Figure 3: Illustrating of Phantom characteristics used in simulated data.
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Algorithm 3: Procedure for generating phantoms

Input:
• nodes (xℓ, yℓ), ℓ ∈ {1, 2, . . . , L} from FEM mesh
• N ∈ N, number of phantoms
• M ∈ N, maximum number of inclusions

Result:
• Phantoms Pi, with conductivity σi, i ∈ {1, 2, . . . , n}

1 select n ∈ U{1,M};
2 for i ← 1, . . . , N do
3 for j ← 1, . . . , n do

/* Sample inclusions and conductivity */

4 Sample Ej , non-overlapping ellipses based on (13), within the circle of radius 0.9;

5 Sample σi
j ∈ U(0.2, 0.8) ∪ U(1.2, 2.0);

6 end
7 for ℓ← 1, . . . , L do

/* Evaluate conductivity on mesh nodes */

8 Evaluate σi(xℓ, yℓ) based on (14) ;

9 end

10 end

In real-life situations, the conductivities of the inclusions are rarely constant. Indeed, usually, there are
textures on internal organs in medical applications. Motivated by this, we take a step further in generating
phantoms, with inclusions having variable conductivities. This introduces a novel challenge to the EIT
problem, and we seek to study its impact on different reconstruction algorithms. The procedure to generate
simulated data remains unchanged. However, σi

j in equation (14) becomes

σi
j = s ◦ f ◦Rαj ,Cj

,

where f : R2 ∋ (x, y) 7→ 1
2 (sin kxx+ sin kyy) ∈ [−1, 1], Rαj ,Cj

is the rotation of centre Cj = (hj , kj) and
angle αj , with respect to the centre and angle of the ellipse Ej respectively; and s applies a scaling so that
the resulting σi

j is either within the range [0.2, 0.8] or [1.2, 2.0]. Fig. 3c shows an example phantom.
We also study the performance of the methods in noisy scenarios, i.e. reconstructing the conductivity

from noisy measurements. The resulting solution to the forward problem u, on the boundary ∂Ω, is then
perturbed with normally distributed random noise of different levels δ:

uδ(x) = u(x) + δ · |u(x)| · ξ(x), x ∈ ∂Ω,

where ξ(x) follows the standard normal distribution N (0, 1).
For the deep learning methods, we employ 20,000 training data and 100 validation data without noises

added. Then we compare the results for 100 testing data with different noise levels.
We employ several performance metrics commonly used in the literature to compare different recon-

struction methods comprehensively. Table 1 outlines these metrics with their mathematical expressions and
specifications. In Table 1, σ denotes the ground truth with mean µσ and variance s2σ, while σ̂ the predicted
conductivity with mean µσ̂ and variance s2σ̂. σ̂i is the i-th element of σ̂ while σi is the i-th element of σ. N
is the total number of pixels, so that σ = (σi)

N
i=1 and σ̂ = (σ̂i)

N
i=1.

4.2 Results and discussions

Tables 2 and 3 present quantitative values for the performance metrics of various EIT reconstruction methods,
in the presence of different noise levels, δ = 0%, δ = 1% and, δ = 5%. The considered performance metrics
are described in Table 1. Understanding the results requires considering the behaviour of these metrics: For
RIE, RMSE, MAE, and RLE, lower values indicate better performance and the objective is to minimise
them; for DC and ICC, values closer to 1 indicate better performance, and the goal is to maximise them.
Below, we examine the results in each table more closely.
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Error Metric Mathematical Expression Highlights

Relative Image
Error (RIE)

∥σ̂ − σ∥
∥σ∥ =

N∑
i=1

|σ̂i − σ|

N∑
i=1

|σi|

Evaluates the relative error between the
true value and prediction [26].

Image
Correlation

Coefficient (ICC)

N∑
i=1

(σ̂i − µσ̂) (σi − µσ)√
N∑
i=1

(σ̂i − µσ̂)
2

√
N∑
i=1

(σi − µσ)
2

Measures the similarity between the true
value and prediction[26, 110].

Dice Coefficient
(DC)

2|X ∩ Y |
|X|+ |Y |

Tests the accuracy of the results. It pro-
vides a ratio of pixels correctly predicted
to the total number of pixels—the closer
to 1, the better [41]. For our experiments,
we round the pixel values to 2 decimal
places before evaluation.

Relative L2

Error (RLE)

∥σ̂ − σ∥2
∥σ∥2

=

(
N∑
i=1

|σ̂i − σ|2
)1/2

(
N∑
i=1

|σi|2
)1/2

Measures the relative difference between
the truth and the prediction. The closer
to 0, the better. [41, 110]

Root Mean
Squared Error

(RMSE)

√
1

N

N∑
i=1

(σi − σ̂i)
2

Evaluates the average magnitude of the
differences between the truth and the pre-
diction. [110]

Mean Absolute
Error (MAE)

1

N

N∑
i=1

|σi − σ̂i|
Evaluates the average magnitude of the
differences between the truth and the
prediction[110]

Table 1: Description of various performance metrics.

4.2.1 Piece-wise constant conductivities

In the noiseless scenario as depicted in Table 2a, FC-UNet shows the best performance across all metrics,
with notably low RIE, RMSE, MAE, and RLE. It also achieves a high DC and ICC, indicating robustness
and accuracy in image reconstruction. The DDSM also performs well, particularly regarding RIE, RMSE,
MAE, and RLE. The Deep D-bar method exhibits competitive results, although slightly inferior to FC-
UNet. Both Sparsity and D-bar methods show weaker performance compared to the deep learning-based
methods. The CNN-LeNet method generally has the worst performance metrics, indicating less accurate
image reconstruction.

Under increased noise of δ = 1%, the relative performance of the methods remains consistent, with FC-
UNet still demonstrating strong performance. Also, the Deep D-bar performs exceptionally well in this case,
particularly in terms of RIE, RMSE, MAE, and RLE. The DDSM also exhibits robust performance under this
noise level, while the CNN LeNet method continues to have the highest values for most metrics, indicating
challenges in handling noise. In contrast, the analytic-based methods of Sparsity and D-bar show particular
robustness to the added noise, evidenced by the unnoticeable change in the performance metrics.

At a higher noise level δ = 5%, the inverse problem becomes more challenging due to the severe ill-posed
nature; and in the learned context, since the neural networks are trained on noiseless data, which differ
markedly from the noisy data, the setting may be viewed as an out-of-distribution robustness test. Here, the
sparsity method comes on top across most metrics, having almost maintained constant performance. However,
the FC-UNet continues to maintain the best performance in terms of ICC, emphasising its robustness in noisy
conditions. Deep D-bar and DDSM display competitive results, indicating resilience to increased noise. The
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RIE ICC DC RMSE MAE RLE

Sparsity 0.03844 0.02159 0.79134 0.09989 0.10360 0.03904
D-bar 0.09784 0.01486 0.08581 0.15515 0.16123 0.09928

Deep D-bar 0.03677 0.02627 0.45121 0.09957 0.10269 0.03721
DDSM 0.03450 0.02690 0.48590 0.08793 0.09075 0.03494

FC-UNet 0.01863 0.02954 0.76004 0.06405 0.06615 0.01890
CNN LeNet 0.04951 0.02509 0.18129 0.08579 0.08856 0.05011

(a) δ = 0%

RIE ICC DC RMSE MAE RLE

Sparsity 0.03835 0.02162 0.79263 0.09982 0.10353 0.03894
D-bar 0.08756 0.01429 0.08125 0.14254 0.14798 0.08889

Deep D-bar 0.02738 0.02762 0.75264 0.08477 0.08751 0.02774
DDSM 0.03581 0.02705 0.46511 0.09047 0.09342 0.03630

FC-UNet 0.02159 0.02929 0.72974 0.07170 0.07409 0.02194
CNN LeNet 0.05905 0.02499 0.15198 0.09884 0.10215 0.05988

(b) δ = 1%

RIE ICC DC RMSE MAE RLE

Sparsity 0.03952 0.02159 0.78729 0.10272 0.10658 0.04015
D-bar 0.08585 0.01349 0.06841 0.13870 0.14377 0.08713

Deep D-bar 0.05563 0.02272 0.51711 0.13523 0.13954 0.05648
DDSM 0.04833 0.02412 0.38292 0.11310 0.11704 0.04917

FC-UNet 0.04332 0.02672 0.28293 0.11519 0.11923 0.04415
CNN LeNet 0.13901 0.02312 0.04568 0.21138 0.21876 0.14155

(c) δ = 5%

Table 2: The performance of various methods trained and tested with piece-wise constant data at different
noise levels. The neural networks used were trained with noiseless measurements for the deep learning-based
methods.

D-bar methods exhibit slightly weaker performance, especially in terms of RIE, RMSE, and MAE. In contrast,
the CNN LeNet method continues to have the highest values for most metrics, suggesting difficulty in coping
with substantial noise.

Overall, these results illustrate the varying performance of different EIT methods under different noise
levels. The deep learning-based methods, particularly FC-UNet, exhibit good performance across low noise
levels. In contrast, the sparsity method shows proof of consistent robustness across higher noise levels,
indicating their effectiveness in reconstructing EIT images, even in the presence of noise. Visual results
across all the noise levels are shown for two test samples in Figure 4.

4.2.2 Textured inclusions scenario

In the noiseless scenario depicted in Table 3a, The best-performing method based on RIE, ICC, RMSE,
MAE, and RLE is FC-UNet, with the best values across these metrics. The sparsity method and DDSM also
perform well, being the first runners-up in these metrics, particularly for DC; the sparsity method achieves
the highest values, indicating good performance, with DDSM as the first runner-up. The worst-performing
method across all metrics in this scenario is ”D-bar.” With a bit of noise of 1% added, the Deep D-bar
surprisingly stands out as the best-performing for most of the considered metrics. The FC-UNet closely
follows it. The sparsity-based method continues to lead in DC. Like the noiseless scenario, D-bar remains
one of the less effective methods across all metrics. This is depicted in Table 3b.

For higher noise levels in Table 3c, the sparsity-based methods once again excel in all metrics but for
the ICC, making it the best-performing method. The DDSM and FC-UNet closely follow in most of these
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(a) Sample 1. (b) Sample 2.

Figure 4: Effects of noise on two piecewise constant samples by various reconstruction methods.

metrics, while the Deep D-bar continues to perform best in ICC. The CNN LeNet consistently performs the
poorest across all metrics and noise levels, especially in this high-noise scenario.

In summary, the best-performing method varies depending on the specific performance metric and noise
level. Sparsity consistently demonstrates robust performance in both noiseless and noisy scenarios, while the
D-bar is generally less effective. However, in terms of computational expense, the sparsity method is more
expensive. The Deep D-bar, FC-UNet, and DDSM often serve as strong contenders, shifting their rankings
across noise scenarios and metrics. Meanwhile, CNN LeNet consistently performs the poorest, particularly
in high-noise scenarios (σ = 5%). Figure 5 depicts this for two test examples.

Furthermore, for both piecewise constant and textured phantoms, the sparsity-based method consistently
performed well for noisy scenarios. This consistently good performance of the sparsity concept in detecting
and locating inclusions even for higher noise levels is most remarkable. The error metrics are almost constant
over noise levels up to 5%. Hence, as a side result, we did check the limits of the sparsity concept for very
high noise levels, which not surprisingly showed a sharp decrease in the reconstruction accuracy for very high
noise levels. We show this in Figure 6, once again for the two piecewise constant samples initially displayed
in Figure 4. The respective performances, all metrics considered, for these two samples are equally shown in
Figure 7 (ICC is not plotted for the sake of visibility since its values are smallest). Figures 8 and 9 show the
corresponding plots for the textured samples initially displayed in Figure 5.
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RIE ICC DC RMSE MAE RLE

Sparsity 0.03869 0.01968 0.79695 0.10473 0.10864 0.03949
D-bar 0.08856 0.01473 0.09956 0.14597 0.15257 0.09063

Deep D-bar 0.03677 0.02627 0.45121 0.09957 0.10269 0.03721
DDSM 0.03559 0.02360 0.42812 0.08930 0.09282 0.03641

FC-UNet 0.02781 0.02639 0.45464 0.07379 0.07679 0.02850
CNN LeNet 0.04930 0.02308 0.18749 0.09010 0.09357 0.05034

(a) δ = 0%

RIE ICC DC RMSE MAE RLE

Sparsity 0.03871 0.01961 0.79497 0.10455 0.10846 0.03951
D-bar 0.07982 0.01381 0.09294 0.13634 0.14231 0.08168

Deep D-bar 0.02738 0.02762 0.75264 0.08477 0.08751 0.02774
DDSM 0.03663 0.02325 0.43803 0.09261 0.09626 0.03750

FC-UNet 0.02980 0.02592 0.42355 0.07957 0.08280 0.03055
CNN LeNet 0.06301 0.02253 0.12531 0.10709 0.11112 0.06426

(b) δ = 1%

RIE ICC DC RMSE MAE RLE

Sparsity 0.03975 0.01961 0.79157 0.10766 0.11177 0.04061
D-bar 0.08015 0.01265 0.07503 0.13590 0.14161 0.08193

Deep D-bar 0.05563 0.02272 0.51711 0.13523 0.13954 0.05648
DDSM 0.04775 0.02091 0.38445 0.11451 0.11883 0.04882

FC-UNet 0.05195 0.02269 0.28514 0.12528 0.12999 0.05312
CNN LeNet 0.17301 0.01907 0.03654 0.25557 0.26481 0.17637

(c) δ = 5%

Table 3: The performance of various methods trained and tested with textured data at different noise levels.
The neural networks used were trained with noiseless measurements for the deep learning-based methods.

5 Conclusion and future directions

In summary, this review has comprehensively examined numerical methods for addressing the EIT inverse
problem. EIT, a versatile imaging technique with applications in various fields, presents a highly challeng-
ing task of reconstructing internal conductivity distributions from boundary measurements. We explored
the interplay between modern deep learning-based approaches and traditional analytic methods for solving
the EIT inverse problem. Four advanced deep learning algorithms were rigorously assessed, including the
deep D-bar method, deep direct sampling method, fully connected U-net, and convolutional neural networks.
Additionally, two analytic-based methods, incorporating mathematical formulations and regularisation tech-
niques, were examined regarding their efficacy and limitations. Our evaluation involved a comprehensive
array of numerical experiments encompassing diverse scenarios that mimic real-world complexities. Multi-
ple performance metrics were employed to shed insights into the methods’ capabilities to capture essential
features and delineate complex conductivity patterns.

The first evaluation was based on piecewise constant conductivities. The clear winners of this series of
tests are the analytic sparsity-based reconstruction and the learned FC-UNet. Both perform best, with slight
variations depending on the noise level. This is not surprising for learned methods, which adapt well to this
particular set of test data. However, the excellent performance of sparsity methods, which can identify and
locate piecewise constant inclusions correctly, is most remarkable.

A noteworthy aspect of this study was the introduction of variable conductivity scenarios, mimicking
textured inclusions and departing from uniform conductivity assumptions. This enabled us to assess how
each method responds to varying conductivity, shedding light on their robustness and adaptability. Here, the
D-bar with learned post-processing achieves competitive results. The winning algorithm alternates between
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(a) Sample 1. (b) Sample 2.

Figure 5: Effects of noise on two textured samples by various reconstruction methods.

(a) Sample 1.

(b) Sample 2.

Figure 6: Effects of additional noise on two piecewise samples by the sparsity method.

sparsity, Deep D-bar and FC-UNet. The good performance of the sparsity concepts is somewhat surprising
for these textured test samples. However, none of the proposed methods was able to reconstruct the textures
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(a) Sample 1. (b) Sample 2.

Figure 7: Performance variation with noise for two piecewise samples by the sparsity method.

(a) Sample 1.

(b) Sample 2.

Figure 8: Effects of additional noise on two textured samples by the sparsity method.

(a) Sample 1. (b) Sample 2.

Figure 9: Performance variation with noise for two textured samples by the sparsity method.

reliably for higher noise levels. That is, the quality of the reconstruction was mainly measured in terms of
how well the inclusions were located - which gives a particular advantage to sparsity concepts.
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These results naturally raise questions about the numerical results presented in several existing EIT
studies, where learned methods were only compared with sub-optimal analytic methods. Our findings clearly
indicate that at least within the restricted scope of the present study, optimised analytical methods can reach
a comparable or even superior accuracy. Of course, one should note that after training, learned methods are
much more efficient and provide a preferred option for real-time imaging.

In conclusion, this review contributes to a deeper understanding of the available solutions for the EIT
inverse problem, highlighting the role of deep learning and analytic-based methods in advancing the field.
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