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Abstract. In industrial applications, it is common to scan objects on a mov-

ing conveyor belt. If slice-wise 2D computed tomography (CT) measurements
of the moving object are obtained we call it a sequential scanning geometry.

In this case, each slice on its own does not carry sufficient information to re-

construct a useful tomographic image. Thus, here we propose the use of a
Dimension reduced Kalman Filter to accumulate information between slices

and allow for sufficiently accurate reconstructions for further assessment of the
object. Additionally, we propose to use an unsupervised clustering approach

known as Density Peak Advanced, to perform a segmentation and spot density

anomalies in the internal structure of the reconstructed objects. We evaluate
the method in a proof of concept study for the application of wood log scanning

for the industrial sawing process, where the goal is to spot anomalies within the

wood log to allow for optimal sawing patterns. Reconstruction and segmen-
tation quality are evaluated from experimental measurement data for various

scenarios of severely undersampled X-measurements. Results show clearly that

an improvement in reconstruction quality can be obtained by employing the
Dimension reduced Kalman Filter allowing to robustly obtain the segmented

logs.

1. Introduction. Sequential scanning of dynamic processes or moving objects is a
common practice in industrial applications of X-ray tomography [14, 39]. Examples
are provided by an object moving along a conveyor belt and scanned by a stationary
X-ray scanner, or by a dynamic process that is monitored in a scanning system. A
common limitation in such configurations is that a full-scale rotational computed
tomography (CT) system [44] may not be available due to cost limitations, but
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low-cost continual scanning modes are preferred, potentially with multiple sensor-
detector pairs and slower rotational speed, if any [40]. In the case of a moving
object on a conveyor belt, this leads to a sequential scanning geometry, in which
only a few measurements per two-dimensional slice can be obtained. The limited
information may not be sufficient to reconstruct a high-quality tomographic im-
age. Furthermore, if one aims to obtain a full three-dimensional reconstruction,
then information between slices needs to be combined to provide sufficient angular
information on the scanned object.

In this study, we aim to obtain an accurate two-dimensional tomographic im-
age from only a few measurement directions per slice by combining information
between the slices. In particular, we evaluate the suitability of a Kalman filtering
approach to accumulate measured data along the third dimension, e.g., the direc-
tion of movement along the conveyor belt. Usually, Kalman filtering is used to
propagate information forward in time. Here, we interpret a sequential scanning
of a three-dimensional object as an evolution of 2D slices along the third dimen-
sion, where the direction of movement serves as the temporal domain or simply a
third dimension. As such, we consider this as a 2D+1 imaging scenario, especially
applicable if structures change gradually along the third dimension. Many organic
materials do so, and this is particularly true for the growth of trees. This gives a
natural analogy to a smooth temporal change in a Kalman model. Additionally, for
most industrial applications, the crucial goal is not the tomographic reconstruction
per se, but rather the identification of relevant features, such as the location of
foreign objects or inclusions.

In our study, we perform this identification step via a novel image segmentation
scheme, obtained by appropriately modifying a recently published unsupervised
clustering algorithm named Density Peaks Advanced (DPA) [15].

We evaluate the practical applicability of our approach for a wood log scanning
scenario, where the logs move along a conveyor belt, and only a few angle X-ray
measurements can be taken for each sequentially scanned 2D slice. The aim is to
obtain a sufficiently accurate reconstruction with as few angles as possible, by ac-
cumulating the information along the third dimension of the log. The secondary
task is to accurately and reliably identify knots in the log to optimize a subsequent
sawing process. Naturally, the tomographic image can be considered sufficient if
all knots are identified correctly in this secondary segmentation task [24, 28]. We
note, that in contrast to the studies [26, 28] where a-posteriori segmentation is
performed on a dense angle full-log scan, we consider here a sparse sequential imag-
ing scenario, where only a few slices at a time are available. Conceptually, the
reconstruction approach considered here is directly related to dynamic tomographic
problems, where an object is assumed to evolve in time. Consequentially, the ma-
jority of related methods consider dynamic imaging problems that evolve over time
and use the information on the object’s motion in the reconstruction task. Here
we distinguish between motion compensation [20, 21], which aims to reconstruct a
reference state along with motion information, and dynamic reconstructions that
provide a reconstruction of the target in the 2D+1 space-time cube [9, 31]. We refer
to [23] for a recent overview. Naturally, only methods of the latter, full dynamic
type are relevant here. We provide an overview of related approaches in section 2.

Furthermore, most reconstruction tasks are closely connected to a subsequent
processing task. For instance, in medical imaging the CT image might be used
for identification and quantification of cancer tissue [42]. Thus, in recent years
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some researchers have also increasingly considered to combine both tasks in a joint
framework [3, 8, 6]. Nevertheless, we will concentrate here on a separated approach,
but keep the segmentation quality in mind as evaluation criterion of reconstruction
quality rather than quantitative reconstruction errors.

This paper is organized as follows. In section 2 we discuss the tomographic recon-
struction task as well as the sequential setting and its relation to dynamic imaging.
In section 3 we present our reconstruction framework based on a dimension reduced
Kalman filter. Next we discuss the use of the DPA method for the segmentation task
in section 4. We present the experimental setup and results for different scanning
geometries in section 5, followed by a discussion in section 6. Finally, we conclude
in section 7.

2. Tomographic image reconstruction. X-ray computed tomography repre-
sents a powerful non-destructive imaging technique that allows the assessment of
objects for quality control. X-rays are emitted and pass through the object of inter-
est, the intensity of the X-ray beam changes governed by the Beer-Lambert law and
the resulting intensity is recorded by the X-ray sensor. The obtained projections
can be used to form a tomographic image in 2 or 3 dimensions, depending on the
detection geometry.

The main challenge connected to the tomographic reconstruction problem is re-
lated to its ill-posedness, as small changes in the data, usually caused by unavoidable
measurement noise, can have a large impact on the reconstruction quality [25, 30].
The problem of ill-posedness is exacerbated when only sparse data is available. An
additional challenge is to maintain computational feasibility for potential online
reconstruction scenarios as both data and image can be high-dimensional.

In the following, we provide a mathematical formalization of the tomographic re-
construction problem. Here we consider the linearized problem, after log-transforming
the recorded intensities. The linear forward mapping from the tomographic image
x ∈ X to the X-ray measurements y ∈ Y then consists of integrating over straight
lines travelling through the target, where the geometry depends on the measurement
system. Here we will consider a fan-beam geometry, that will be further explained
in section 5. This measurement process can then be represented by the linear for-
ward operator A : X → Y , where X and Y are Hilbert spaces. The measurement
model is then given by

y = Ax+ η (1)

where the y ∈ Y is the measured sinogram that consists of X-ray projections for
several measurement angles, x ∈ X is the tomographic image to be reconstructed,
and η ∈ Y denotes measurement noise.

The corresponding inverse problem consists in reconstructing x from the avail-
able measured sinogram y under knowledge of the scanning geometry described by
A. This needs to be done in a robust manner to prevent the noise η from corrupting
the tomographic image. The most common reconstruction is given by filtered back-
projection (FBP), which consists of a frequency filter of the measured data, followed
by the backprojection operation given the adjoint A∗ : Y → X. Unfortunately, the
FBP assumes dense angular sampling and does not provide sufficient reconstruction
results under sparse scanning geometries [30].

Alternative approaches are given by a variational formulation of the reconstruc-
tion problem [38]. That is, we aim to find the reconstruction xrec as the minimizer of
a cost functional. In the simplest quadratic case, the reconstruction can be obtained
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as

xrec = argmin
x∈X

1

2
∥Ax− y∥22 + α∥x∥22, (2)

where α balances between the two terms. The first term measures the goodness-of-
fit, or data-discrepancy, whereas the second term is the so-called regularizer ensuring
convergent and robust reconstructions. A major advantage of the formulation in
(2), is that the solution can be represented in a closed form as

xrec =
(
ATA+ αI

)−1
A∗y, (3)

where I is the identity. We note that other regularizers can be considered in (2),
which encode different prior information on the expected targets. For instance,
piece-wise constant reconstructions via total variation [12, 37], wavelet sparsity
[13], or even learned regularizer [29].

2.1. Sequential tomography. It is commonly known, and easily verified by recon-
structions of logs with high resolution, that logs of wood are objects whose internal
structure varies slowly along the vertical direction. Two consecutive sections of a
log are almost always similar to each other if the distance between them is in the
order of 2-5 millimetres. This observation makes it obvious that the quality of the
reconstructions obtained from sparse angle data could be improved by using the
information of one or more neighboring slices.

Examples of approaches that fit this scenario are reconstruction algorithms for
evolving targets. A classic way to propagate information forward is given by filtering
approaches like Kalman Filters (KF), which are designed for estimating the states
of time series models. Alternatively, one could also consider data-driven methods
such as recurrent neural networks, if large amounts of high quality data are avail-
able. Here we will focus on the former as the availability of abundant high quality
measurements is not always freely available. We mimic the time series type of data
by considering the wood log as a sequence of 2D slices that evolve as the log passes
through the scanner.

That means we do not aim at reconstructing one image or volume at a time as
formulated in eq. (1), but rather a series of reconstructions xk for k = 0, 1, 2, 3, ....
Here, each xk corresponds to a 2D image and a 3D volume is obtained by a stack
of 2D reconstructions. The essential task of the dynamic reconstruction problem is
now to use the relation between slices xk efficiently to compensate for possible highly
sparse measurements for each k separately. Naturally, in order to accumulate the
information along the third dimension, the measurement geometry, i.e., the angular
sampling, needs to change. That means the forward operator changes for each slice.
The sequential measurement model is then given by

yk = Akxk + ηk. (4)

At each slice xk we take a different set of measurements modelled by Ak and obtain
the corresponding measurement yk under noise ηk.

3. Dimension Reduced Kalman-filter. There exist a vast amount of filtering
approaches. For reasons of computational efficiency we select to build our model
on the previously introduced Dimension Reduced Kalman Filtering (DrKF) method
[22, 41]. In DrKF, the X-ray reconstructions are parameterized by a low-dimensional
basis, that reduces the dimensionality of the state space, and consequently decreases
the computational cost. In the following we consider the finite dimensional case,
that is x ∈ RN , y ∈ RM and the forward operator is given as matrix A : RN → RM .
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Let us now give a brief summary of the method considered, for further details see
[22, 41]. That is, we consider the following pair:

xk = Mkxk−1 + ϵk (5)

yk = Akxk + ηk (6)

where xk is the k-th section of our scanned log; Mk = I is our forecast operator,
moving from one slice to the next one; ϵk is a zero mean Gaussian model error with
covariance matrix Qk ∈ RN ; yk is the sinogram data; the observation model Ak is
the corresponding discretized matrix from eq. (4) and ηk is a zero mean Gaussian
observation error with covariance matrix Rk ∈ RM .

Finding the model error covariance matrix is a crucial step in ensuring the ac-
curacy of the filtering process. Through careful trial and error, we have found a
Qk that balances between giving sufficient weight to new measurement information
and not forgetting the valuable information from the previous reconstructions.

For k = 0 we have x0 as in eq. (3) with A substituted by the projected form A0Pr,
which we will explain next. The idea of dimension reduction is to constrain the
problem into a subspace that contains most of the variability allowed by the prior.
The projection matrix Pr ∈ RN × Rr used for prior-based dimension reduction is
obtained from the prior covariance matrix Σ using the singular value decomposition.
In this notation, r stands for the r leading singular values used. The covariance
matrix Σ in this case is obtained by using standard Gaussian covariance function:

Σi,j = σ2 exp−d(xi,xj)
2

2l2 , where σ2 is the variance parameter, l is the correlation
length and d(xi, xj) is the Euclidean distance between pixels xi and xj . For practical
purposes we select σ = 0.1 and l = 1.5. It is possible to use a different prior
covariance and achieve comparable outcomes. However, we chose this specific prior
covariance because it was shown to produced visually satisfactory reconstructions,
for further details, we refer to the experimental section of [22]. One can compute the
SVD of the covariance matrix as Σ = USUT where U is a unitary matrix containing
the singular vectors and S is a diagonal matrix containing the singular values. The
projection matrix Pr can be obtained as:

Pr = UrS
1/2
r (7)

Let us now parametrize our images using the projection matrix Pr as

xk = xp
k + Prαk (8)

and thus obtain the following prediction step

xp
k = Mk(x

p
k−1 + Prα

est
k−1) (9)

Cp
k = (MkPr)(ϕ

est
k−1)(MkPr)

T +Qk (10)

where xp
k is the prediction mean and Cp

k is the prediction covariance matrix. The
time consuming update step is performed in the lower dimensional space,

αest
k = ϕest

k (AkPr)
TR−1

k (yk −Akx
p
k) (11)

ϕest
k = ((AkPr)

TR−1
k (AkPr) + PT

r (Cp
k)

−1Pr + ξI)−1 (12)

We note that the above equations are conceptually similar to eq. (3), to produce
the update for xp

k in eq. (9). To further reduce the computations one can observe
that Cp

k = BkB
T
k +Qk, Bk = MkPrVk, ϕ

est
k−1 = VkV

T
k and therefore obtain:

(Cp
k)

−1Pr = Q−1
k Pr −Q−1

k Bk(B
T
k Q

−1
k Bk + I)−1BT

k Q
−1
k Pr. (13)



6 SEBASTIAN SPRINGER, ALDO GLIELMO, ANGELINA SENCHUKOVA, ET AL.

Additionally, in the computation of ϕest
k we introduced a regularizer here before

taking the inverse to avoid getting a singular matrix, this showed to be necessary
for the highly sparse imaging scenarios under consideration here. The regularizer is
given by the identity matrix multiplied by a constant that grows linearly with slope
ξ = 0.1 as the number of angles increases. We note, that due to the nature of the
Kalman filter, the first 5-10 slices are needed to accumulate information, after that
we can expect good reconstruction performance. A full reconstruction pipeline is
given Algorithm 1.

Algorithm 1: Pipeline of the reconstruction workflow

input : Sinograms {yk}Nk=0, system matrix A, number of slices N
output: Reconstructed {xk}Nk=0

1 begin
2 Select reduced dimension r << N ;

3 Select prior covariance matrix Σ, e..g:

4 Σi,j = σ2 exp−d(xi,xj)
2

2l2 , with σ2 the variance parameter, l the
correlation length and d(xi, xj), and the Euclidean distance between
pixels xi and xj ;

5 Construct Projection matrix Pr = UrS
1/2
r , by the SVD on the covariance

matrix Σ = USUT ;
6 Reconstruct the first slice x0 in the full space;

7 N ← number of slices;

8 for k = 1 to N do
9 Compute the prior mean xp

k by (9);

10 Perform the decomposition ϕest
k−1 = VkV

T
k ;

11 Compute the matrix Bk = MkPrVk;

12 Compute (Cp
k)

−1Pr by (13);

13 Compute αest
k and ϕest

k by eqns. (11) and (12);

14 end

15 return {xk}Nk=0

16 end

4. Segmentation. In the literature, one can find many articles [4, 7, 18, 19, 32, 43]
and reviews [16, 28] describing various kinds of approaches that can be used to locate
specific structures like knots, cracks, resin pockets and alien objects inside logs from
high quality reconstructions obtained using low speed CT scanning. Most of these
approaches have a knot detection rate exceeding 90% with about 1% falsely detected
knots.

However, in contrast to standard measurement settings, this work focuses on
severely sparse angular measurements and levels of perturbations much different
from those of medical CT scanners. To deal with this scenario, we propose to use
an unsupervised segmentation approach particularly robust against noise.

4.1. Segmentation by Density Peaks Advanced (DPA). We consider a fully
unsupervised clustering approach, the Density Peaks Advanced (DPA) proposed in
[15].
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The method can be used to segment the reconstructed log either slice by slice
(in 2D) or directly in 3D, and in the experiments presented in section 5 all segmen-
tations have been done directly on blocks of 11 consecutive slices (3D).

The main intuition behind the DPA procedure is to identify statistically signif-
icant clusters of points as as statistically significant ‘density peaks’, i.e., groups of
points that have high density and that and are separated by regions of low density.

Specifically, DPA first estimates the local density around each point using the
Point Adaptive k-nearest neighbour (PAk) [35] estimator, and then identifies statis-
tically significant clusters using the procedure of the Density Peaks (DP) algorithm
[36] modified with three heuristics

For our application, we do not need to use the PAk density estimator, since X-ray
intensities can be directly taken as estimates of the material densities in the same
location, and hence modify the original DPA scheme as follows. For further details
on the DPA scheme see [15].

Given the intensity values in each pixel of the tomographic image, DPA needs
estimates of a log-density log(ρi) around each point i, the error on the log-density

ζi and the number of neighbours k̂ among which the density is assumed to vary
only slightly.

In our case, we assign to the variable ρ the approximation of the densities ob-
tained by our reconstructions x and we estimate the noise level ζi from the back-
ground noise surrounding the reconstructed log (with mean 0.033 and standard de-
viation 0.003), while we fix the neighbourhood size to 200 as we empirically found
that it is a good compromise between classifying correctly small but still relevant
higher-density areas and disregarding density fluctuations..

The next step in the procedure is to find automatically the density peaks (or
‘clusters’) of the image. This can be done by observing that density peaks are
surrounded by neighbours with lower local density but at relatively large distances
from points with higher local density.

To make our estimates more robust against noise, cluster centres are defined as
points that maximize locally, and in a statistically significant manner, the error-
scaled log-density gi = log(ρi)− ζi. This is done as follows.

We start by finding a preliminary cluster assignment using

Heuristic 1 : A point i is a local density centre if all its k̂ nearest neighbours have a
value of g lower than gi and it does not belong to the neighbourhood of any other
point with higher g. After all the centres have been found, all the pints (in our
specific case voxels of the consecutive reconstructed slices) are assigned to the same
cluster of the nearest point with a higher cost function value.

The next task is to find the points on the border between two clusters using
Heuristic 2 : A point i of the cluster c is defined to be on the boundary between the
two clusters c and c′ if its closest point j of the cluster c′ lies within the distance rk̂
given by its neighbourhood k̂. Moreover, it must be the closest to j among those
belonging to c. The saddle point between two clusters c and c′ is defined as the
point with a higher value of g between those on the boundary between the two
clusters.

The log-density of the saddle point and its error are then defined respectively
as log(ρcc′) and ζcc′ . Based on these last two quantities it is possible to write a
criterion for distinguishing genuine density peaks from false peaks generated from
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measurement errors using

Heuristic 3 : A cluster c is considered to be the result of a density fluctuation if
all its values have comparable density values to the one on the border. In particular,
cluster c is merged with the cluster c′ if

(log(ρc)− log(ρcc′)) < Z(ζc + ζcc′)

where ρc is the density of the center of the cluster c, and the constant Z fixes the
level of statistical confidence. Heuristic 3 is checked for all the clusters c and c′ in
decreasing order of log(ρcc′).

The segmentation map obtained contains statistically significant clusters (each
labelled with increasing positive numbers), which will be characterised by grid points
having a higher density of image intensities. All the others will be assigned to the so
called ‘halo’ cluster (labelled as -1). As our goal was only to spot density anomalies
within the logs we will merge together all the statistically significant clusters by
assigning all of them to the same cluster.

4.2. Implementation. The described segmentation method is implemented in
Python using the DADApy toolbox [17], while the DrKF reconstruction part is
done in Python by using standard libraries. As stated previously the main differ-
ence with respect to the examples given with the DADApy toolbox is that we start
from the approximation of the densities obtained by our reconstructions, we use
the statistic of the background noise to assign a noise value to each grid point and
we fix the neighbourhood size to separate genuine knots from density fluctuations,
while in general the toolbox would estimate all the values from point clouds of data.

5. Wood log reconstruction and segmentation. In the sawing process, the
logs are cut into boards. Summarizing in one sentence, we can say that optimizing
this process consists of producing the highest possible quality boards from each log,
minimizing the waste of time and resources. In this context, quality is directly cor-
related with economical value and therefore it is important to estimate the potential
of each wood log in terms of boards that can be obtained from it. To do so, the
following must be considered: one must know the internal structure of each log,
locate all the elements that can influence the product quality (e.g. cracks, knots,
foreign objects, etc.), and finally optimize the cutting parameters such as angle and
dimensions to maximize the potential value of the extracted boards.

The first step is therefore getting accurate CT images from sparse sequentially
obtained projection data. The reason why there is a need for methods that can work
well with a few angles is mainly economical, as every extra X-ray source added has
a significant impact on the cost of the measurement device and consequently also
an overhead cost added to the sawing process.

In this section, we will study, within the proposed filtering framework, how recon-
struction quality decays as the number of sources decreases for different acquisition
schemes. The comparison will be done on the reconstruction and the corresponding
segmentation, where our reference will be the reconstruction obtained with standard
methods and dense X-ray measurements.

5.1. Acquisition geometry and data calibration. The data used in this work
has been produced by the Finnish company Finnos Oy, specialized in solutions for
the sawing industry [1]. A schematic representation of the tomographic set-up used
to produce the data we used can be found in fig. 1. The X-ray scanner, fixed
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around the conveyor belt along which the log is moved and rotated, is represented
by a source emitting the fan-shaped X-ray beams and a corresponding flat line
detector which consists of 768 pixels that record the beam intensities.

S

n
D
=
768px

D

h
D

COR
rD

αD

hS

rS

Figure 1. A schematic drawing of the fan-beam acquisition geom-
etry. Here S represents one of the X-ray sources while D = 1154.2
is the plate on which detectors were installed. The parameter
rS = 859.46 is the distance between the X-ray source and centre of
rotation, rD = 705.37 is the distance between the centre of rotation
and the detector, hS = 232.86 is the source shift, hD = −24.65 is
the detector shift, αD = 0.16 is the detector tilt, and nD = 768 is
the number of detector elements.

We define as ∆ the angular difference between consecutive sources in the ac-
quisition geometry. To obtain the exact geometric values shown in fig. 1 we used
a calibration procedure using two wooden phantoms fig. 2, which were glued on
both ends of the scanned trunk to calibrate the parameters of our virtual geometry
implemented in python with ODL [2] using ASTRA [45].

As a reference object in this work, we selected a spruce trunk. We scanned the
trunk with dense angular measurements every 2mm in the vertical directions so
as to tune the respective system matrixes and obtain our reference reconstructions
using FBP. We then sub-sampled the respective sinograms to use them as data for
our approach.

We note that despite all the precautions one can introduce to maintain the consis-
tency of the data, a certain uncertainty remains in the parameters of the fan-beam
geometry due to different sources of vibrations and mechanical displacements in-
troduced while the log is moved on the conveyor belt. Thus advanced and robust
approaches for reconstruction are indeed necessary.

5.2. Reconstruction and Segmentation. In this section, we will examine how
the quality of the reconstruction and subsequent segmentation decreases as the
number of sources decreases for different rotational schemes. We refer here to
rotation regardless of whether it concerns the log or the measurement system, as it
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(a) Cal-

ibration
phantom 1

(b) Cal-

ibration
Phantom 2

Figure 2. Wooden phantoms used to perform the system matrix
calibration

can be implemented either way in practice. First, we will show how rotation plays a
fundamental role in the quality of the reconstruction. In the absence of rotation, we
will see how there is practically no improvement in the quality of the reconstruction
when using the DrKF. On the other hand, even if rotation occurs in very small
increments the situation improves, but the internal nodes are still not adequately
reconstructed. The situation is different if the angle between measurements ∆ is
sufficiently large or even randomized. In that case, it is possible to obtain a quality
of reconstruction sufficient to obtain a decent segmentation even with only 3 angles
per slice.

The image resolution adopted in the following experiments was 1282 while the
lower dimensional space of the filtering approach was chosen as r = 3000, which
is about ∼ 18% of the original problem size. The trade-off between reconstruction
quality and computational speed can be modified by increasing or decreasing r
according to the specific needs.

5.2.1. Reconstructions with fixed acquisition geometry. In the first result presented
we will use as reference 15 consecutive slices taken from one scanned log. We start
our computation from a fixed first slice number 217 and proceed with the DrKF
formulas by keeping the system matrix fixed, namely in absence of rotation. The
first and last of these 15 reconstructions are presented in fig. 3 in comparison the
the FBP from full angular data. As can be seen, there has not been any significant
accumulation of information after 15 iterations of the filtering formulas. Moreover,
the quality of the reconstructions does not allow for the segmentation method used
to locate the knots inside the wood log.

5.2.2. Reconstructions with rotating acquisition geometry. From now on we will con-
sider only cases with rotating acquisition geometry. As a reference, we will have
two sections of 11 slices centred respectively at fig. 4a and fig. 4b. We will use
a burn-in period for the Kalman filter of 50 slices before the reference blocks are
computed to have consistent and comparable reconstruction quality between the
different imaging geometries.



RECONSTRUCTION AND SEGMENTATION FROM SEQUENTIAL MEASUREMENTS 11

(a) FBP refer-
ence: slice 217

(b) DrKF
reconstruction

217

(c) FBP refer-
ence: slice 232

(d) DrKF
reconstruction

232

Figure 3. (a) and (c) are the reference figures obtained using FBP
and dense sampling with 360 measurement angles while (b) and (d)
are the respective reconstructions obtained using DrKF and a fixed
system of 3 X-ray source-receiver pairs.

We start by considering the case in which two consecutive acquisition geometries
have a random angular increment, and we present reconstructions with an increasing
odd number of sources from 1 to 15. Where the difference between consecutive
sources ∆ is uniformly chosen over 360 degrees. As an example for 5 sources these
will be located at (0, 60, 120, 180, 240) and an angular increment of 35 degrees we
will move these to (35, 95, 155, 215, 275) in the next slice while a further angular
increment by 42 degrees would result in (77, 137, 197, 257, 317) in the second one.
We, note that the randomness is only partial as we ensure covering the full angular
range before the sampling scheme can return to the initial state.

The visual inspection of the resulting reconstructions for Reference A presented
in fig. 5 indicates that the reconstruction quality is already good when using only 3
sources and does not increase significantly if one uses more than 5. This is further
confirmed by the Peak signal-to-noise ratio (PSNR) [33] values given in fig. 11.
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(a) Refer-
ence A

(b) Refer-
ence B

Figure 4. Two reference slices used to compare the reconstruc-
tion/segmentation quality.

(a) DrKF 1
source

(b) DrKF 3
sources

(c) DrKF 5
sources

(d) DrKF 7

sources

(e) DrKF 9

sources

Figure 5. DrKF reconstructions of the Reference A with acquisi-
tion geometry rotating with random speed.

Next follows the case in which the scanner is rotating at a constant slower speed
so that every consecutive reconstruction is obtained with an acquisition geometry
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rotated by just 1 degree with respect to the previous one. In this case, the recon-
struction quality is clearly lower as can be seen from fig. 6 and it is further confirmed
from the PSNR coefficients given in fig. 11 as the values are all lower than the 3
sources reconstruction given in fig. 5 .

(a) DrKF 1
source

(b) DrKF 3
sources

(c) DrKF 5
sources

(d) DrKF 7

sources

(e) DrKF 9

sources

Figure 6. DrKF reconstructions of the Reference A with acquisi-
tion geometry rotating by 1 degree between consecutive slices.

The last type of acquisition scheme presented consists of a constant rotation
with increment given by the closest entire number to 1/4 of the angular difference
between two sources ∆, which is not a divisor of ∆. In this way, it takes 5 iteration
steps (approximately 1 cm within the log) before returning to a set of angles that
is close to the initial but rotated slightly, this sampling scheme is motivated by the
golden angle sampling scheme in magnetic resonance imaging, that aims to sample
the whole Fourier space radially. For example for the 5 sources case described
above the rotation angular increment is given by 16. Both the visual inspection
of the resulting reconstructions for Reference A presented in fig. 7 and the PSNR
coefficients of fig. 11 indicate that this scheme produces similar results to those of
the random angular rotation. We performed the same test for Reference B and the
reconstructions presented in fig. 8 lead to similar conclusions.

5.2.3. Segmentation comparison. We then segmented all the reconstructions pre-
sented previously to assert the ability of the segmentation method to spot the
location, size and direction of the knots within the wood logs. Figure 9 contains
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(a) DrKF 1
source

(b) DrKF 3
sources

(c) DrKF 5
sources

(d) DrKF 7

sources

(e) DrKF 9

sources

Figure 7. DrKF reconstructions of the Reference A with acquisi-
tion geometry rotating by ∆/4 degree between consecutive slices,
where ∆ is the angular difference between consecutive sources in
the acquisition geometry.

both the segmentations of the reference reconstruction given in fig. 4a and those
given in fig. 7. We concentrate here on the last measurement scenario with larger
angular increments, as it delivers a good reconstruction quality under a realistic
imaging scenario. We note, that the wood logs scanned were not dried before mea-
surements were taken and therefore the external wet rings of the tree have an image
intensity indistinguishable from the knot parts. This wet part can be clearly seen
in the segmentations and represents a good portion of the selected pixels. As a
consequence, the Dice squared coefficients [11]

is influenced both by the wet parts and by the knots. Nevertheless, the segmen-
tation method used is able to locate the knots adequately already with 3 sources
and it does not improve significantly for schemes having more than 5 sources. A
similar behaviour was observed for the random angular sampling. This is confirmed
in fig. 11, which further shows that the last acquisition scheme presented has a
comparable precision to the random rotation case, for all the different number of
sources considered. Where only a slight disadvantage is observed for less than 5
angles.

We compared the segmentation performance obtained by using DPA with a stan-
dard method such as multi-OTSU [27]. Despite the performance of the two methods
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(a) DrKF 1
source

(b) DrKF 3
sources

(c) DrKF 5
sources

(d) DrKF 7

sources

(e) DrKF 9

sources

Figure 8. DrKF reconstructions of the Reference B with acquisi-
tion geometry rotating by ∆/4 degree between consecutive slices,
where ∆ is the angular difference between consecutive sources in
the acquisition geometry.

is statistically comparable fig. 12, DPA performs better on the fine details where
multi OTSU tends to overestimate the knot , fig. 10.

6. Discussion. In the previous section, we have shown how the rotation of the
acquisition geometries affects greatly the reconstruction quality. We studied four
different schemes including rotating and non rotating acquisition geometry. In the
non rotating case, we saw that there is no gain in using the DrKF formulas. We
saw also that the speed of rotation needs to be chosen properly in order to get the
best out of this approach. The take home message is that to exploit the potential
of the filtering formulas we should cover, with the number of sources available, the
angular sampling of the measurements for each 2D section as efficiently as possible
within approximately 5 slices (about 1 cm in the vertical direction). The results
given in fig. 11 indicate that, if the rotation speed is tuned properly, one could
obtain fair results by using as little as 3 X-ray source-detector pairs and we do
not get significant gains by using more than 7. Alternatively, to the fixed rotation
speed, one could also consider finding an optimal sampling strategy for the scanning
procedure [10], but which would add a significant computational overhead to the
reconstruction.
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(a) Refer-
ence A

(b) DrKF 1
source

(c) DrKF 3
sources

(d) DrKF 5

sources

(e) DrKF 7

sources

(f) DrKF 9

sources

(g) DrKF
11 sources

(h) DrKF
13 sources

(i) DrKF
15 sources

Figure 9. Segmentations of the Reference A and the reconstruc-
tions presented in fig. 7.

6.1. Limitations. Despite the good performance obtained in terms of precision,
we must state also that the computational times per slice in the current implemen-
tation are too high for online use. For the experiments presented here, most of the
computational effort ∼15 sec. is used to obtain one slice reconstructed while 0.7 sec.
is on average needed to segment a block of 10 slices. If the dimensions to which
the image is projected are cut more drastically before performing the KF steps
to r = 1000, the time per slice reconstructed could be reduced by approximately
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(a) Refer-

ence A

(b) DPA

segmenta-

tion

(c) multi

OTSU seg-

mentation

Figure 10. Segmentations of the Reference A by using DPA and
a standard multi OTSU.

(a) Average Dice

squared coefficient.

(b) Average PSNR.

Figure 11. Comparison of quantitative values for for different ac-
quisition schemes. Values are obtained by averaging in the block of
11 slices centered at the reference in fig. 4a. (A) Dice squared co-
efficient, where the reference segmentation was obtained from the
full angular FBP reconstruction. With Z set to 3.4 for number
of angles smaller than 7 and 2.4 for the other cases. (B) Average
PSNR.

10 times, but with major loss in reconstruction quality from 24 dB to 18 dB. We
present in fig. 12 a summary of the impact of this choice the computational cost
and on the reconstruction quality. The computations were performed with Python
on a Linux workstation with 128GB memory and a Dual CPU (Intel(R) Xeon(R)
Silver 4116).

We note that this time values take into account that we pre-computed all the
system and projection matrices needed in the DrKF formulas, as assembling each
matrix representation to solve the update equations for the Kalman filter would
require over a minute.
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Finally, it should be noted that the need for a correct rotation between slices
is a practical limitation and needs to be addressed to allow for a high throughput
system.

(a) Comparison DPA -

multi OTSU.

(b) Impact of the num-

ber r of singular values
used in the dimension re-

duction.

Figure 12. Values are obtained by averaging in the block of 11
slices centred at the reference in fig. 4a. (A) Comparison of the
segmentation method used with a standard multi OTSU. (B) Im-
pact of the reduced dimension r (amount of singular values) on the
computational (blue) time and the reconstruction quality (orange).

7. Conclusions. This work proposes a Kalman filtering method for reconstruction
and an unsupervised clustering approach to spot density anomalies in the internal
structure of objects. The internal 3D structure of the object is obtained by accu-
mulating information from severely sparse angular sequential sampling in 2D, done
as the object passed through the X-ray scanner. We have shown how the rotation
of the measurement device plays a key role in the reconstruction quality. In partic-
ular, we presented a realistic constant rotation speed scheme that maintained the
same level of accuracy as the best theoretical scenario, namely a random angular
incremental speed, which would be impractical for practical use.

Furthermore, we saw that there is no need to use more than 7 sources if the
acquisition scheme is designed properly and that one could achieve good results by
using as little as 3 X-ray sources and a fairly simple measurement device. The unsu-
pervised clustering approach used was revealed to be robust against reconstruction
noise. As the logs were not dried before the scanning process, the Dice coefficients
presented in fig. 11 are significantly affected by the wet external part of the tree
that gets mixed with the wood knots given that they have very similar image inten-
sity. This could be overcome by spectral data due to different energy attenuation
coefficients and left as a possibility to investigate in future work.

Finally, an option to overcome the computational burden could be by extending
the Kalman filtering framework in combination with learning based methods. For
instance by replacing computationally expensive parts with a neural network or
intertwining model and data-driven components in the algorithm [5, 34]. Neverthe-
less, the nature of accumulating information between slices by a well chosen angular
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sampling is the essential part and needs to be carried over to the learning-based
setting.

Acknowledgments. We thank Alessandro Laio for support and helpful discussions
on the Segmentation by Density Peaks Advanced used within this study. Codes for
the Kalman filtered reconstructions will be published after acceptance.
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