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Abstract—Compressed sensing multi-user detection (CS-MUD)
algorithms play a key role in optimizing grant-free (GF) non-
orthogonal multiple access (NOMA) for massive machine-type
communications (mMTC). However, current CS-MUD algorithms
cannot be efficiently parallelized, leading to computationally
expensive implementations of joint activity detection and channel
estimation (JADCE) as the number of deployed machine-type
devices (MTDs) increases. To address this, the present work
proposes novel JADCE algorithms that can be applied in parallel
for different clusters of MTDs by exploiting the structure of
the pilot sequences. These are the approximation error method
(AEM)-alternating direction method of multipliers (ADMM), and
AEM-sparse Bayesian learning (SBL). Results presented in terms
of the normalized mean square error and the probability of
miss detection show comparable performance to the conventional
algorithms. However, both AEM-ADMM and AEM-SBL algo-
rithms have significantly reduced computational complexity and
run times, thus, facilitating network scalability.

I. INTRODUCTION

DETECTION, channel estimation, and data decoding are
fundamental operations performed by a receiver in a

wireless communication network [1]–[3]. However, the ma-
jority of algorithms designed for these operations in previous
wireless communication systems, i.e., fourth-generation (4G)
and earlier, were tailored exclusively for downlink human-type
communications (HTC) [4], [5]. In a turn of events, the new
communication standards, i.e., the fifth generation (5G) and
beyond (5GB), natively support a new set of devices termed
machine-type devices (MTDs), which perform various sensing
tasks in the Internet of Things (IoT) paradigm [6]–[8]. Notably,
MTDs are energy constrained, yet in some cases, they need
to be deployed in remote areas where they cannot be readily
charged. For this reason, MTDs are designed to save energy
by only switching to active transmission mode after sensing
data and remaining in sleep mode in the absence of data. This
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intermittent mode of operation reduces energy consumption
while creating sporadic uplink traffic, which is unconventional
to HTC. Since the modus operandi of the MTDs is incompat-
ible with existing HTC devices, a verbatim implementation
of existing receive algorithms in massive machine-type com-
munication (mMTC) networks can degrade communication
performance. Fortunately, the aforementioned problems can be
jointly addressed by employing low-complexity transmission
schemes, for which grant-free (GF) non-orthogonal multiple
access (NOMA) plays a pivotal role.

GF-NOMA techniques have been proposed as low complex-
ity transmission schemes for uncoordinated transmissions of
the MTDs [9], [10]. Under these schemes, active devices trans-
mit their data without permission from the base station (BS),
thus bypassing the signaling overheads that are associated with
the handshaking/scheduling process and consequently reduc-
ing communication overheads and access latency [9], [10].
Nevertheless, the lack of scheduling and the inevitable use
of non-orthogonal pilot sequences lead to increased collisions
and multi-user interference (MUI). An inefficient use of GF-
NOMA can be detrimental to the previously mentioned opera-
tions (detection, channel estimation, and data decoding), which
is one of the major drawbacks of GF-NOMA. Ultimately,
the performance of GF-NOMA schemes relies on efficiently
resolving both the collisions and MUI [11].

The need for efficient GF-NOMA has motivated compressed
sensing (CS) multi-user detection (MUD) for joint activity
detection and channel estimation (JADCE) and/or unsourced
random access (URA) [12]. The former is concerned with user
identification and data decoding, while the latter is concerned
with decoding the transmitted data instead of identifying
the actual transmitting MTD [13]. As a result, JADCE is
applicable in status update scenarios with different types of
messages, e.g., when there are different MTDs for sensing
ambient humidity, acidity, and temperature. Conversely, URA
can be employed in scenarios where multiple MTDs transmit
observations about a common physical phenomenon, such as
temperature measurements in a smart factory, to obtain average
information about this phenomenon.

By and large, both JADCE and URA rely on the fact
that a relatively small number of MTDs are simultaneously
active in a given coherence interval (CI) despite their massive
numbers. For instance, future networks are expected to host up
to 10 million MTDs per km2, while only a small fraction of
them will be active at the same time [14]. The identification
of the active MTDs can naturally be posed as a CS-MUD
problem, which can be computationally complex [15], [16].
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However, with the increasing deployments of IoT, some MTDs
are bound to present similar characteristics and performance
requirements. These similarities can naturally facilitate the
formation of clusters [17]–[20]. Basically, clusters of the
MTDs can be formed according to the channel statistics (e.g.,
channel covariance matrix), performance requirements, traffic
characteristics, or activation probabilities, among other things
[20]. Given these considerations, clustering the MTDs can help
optimize resource allocation, thus making the network design
more flexible and scalable. This can lead to simplifying some
CS-MUD problems and facilitating GF-NOMA for a massive
number of MTDs.

There is a noteworthy research endeavor to develop scalable
algorithms for CS-MUD to optimize GF-NOMA. Typically,
these methods utilize the massive multiple-input multiple-
output (mMIMO) technology, which enables distributed or
parallel signal processing. In a quest to accommodate a
massive number of MTDs, most of the works rely on pilot data
designed from fully non-orthogonal sequences [21]–[25]. Even
though non-orthogonality of the pilot sequences is crucial for
serving a massive number of MTDs, it is possible to devise
pilot sequences that can be grouped into finite orthogonal sub-
spaces to capture/realize different clusters. Given the orthogo-
nal subspaces, it is practical to implement CS-MUD algorithms
in parallel while maintaining zero MUI across the clusters.
Ultimately, this reduces the need for information exchange
while the algorithms run in parallel. Equally important is to
note that such pilot sequences have to be formed using non-
independent identically distributed (i.i.d.) sequences such as
Hadamard, Zadoff Chu, and Fourier matrices, which are all
consistent with the 3GPP Release 17 standard [26]. As noted
by Liu et al. [27], using i.i.d. pilot sequences is impractical,
and most CS-MUD algorithms designed thus far to work under
this assumption face challenges in practical scenarios. It is
therefore crucial to develop practical approaches that facilitate
the efficient implementation of CS-MUD algorithms while
considering the existence of clusters in mMTC. Even though
providing a good foundation for parallel JADCE design, to
the best of our knowledge, there are no works on JADCE
algorithms that incorporate the orthogonal pilot subspaces
for clustered MTC. This is precisely the aim of the present
work. Some of the advantages of the proposed algorithms are:
i) reduced MUI, ii) efficient resource usage, iii) scalability,
and iv) network design flexibility, all of which contribute to
efficient signal recovery. To provide context, we present a brief
literature survey of related works.

A. Related Literature

In the recent past, mMIMO-enabled mMTC has become
an active area of research. mMIMO is crucial for mMTC
because it can increase spectral efficiency, data rates, and link
reliability [28]. There are some ongoing works to develop
efficient CS-MUD algorithms for GF-NOMA using mMIMO.
For example, He et al. proposed a distributed detection al-
gorithm based on expectation propagation (EP) in [29] to
facilitate integration at the central processing unit (CPU). The
proposed work also presented a performance analysis of the EP

in a distributed cell-free (CF)-MIMO. However, although the
proposal improves the detection performance, it also increases
the computational complexity of the CPU. Similarly, Li et al.
in [30] proposed a covariance-based device activity detection
algorithm that exploits orthogonal pilot sequences to reduce
the MUI. Relative to existing works, their results showed
improved performance for low signal-to-noise ratio (SNR) and
short pilot lengths. On the other hand, Ganesan et al. presented
a maximum likelihood (ML) based device detection algorithm
for CF-MIMO in [23]. Their results demonstrated improved
performance when using CF-MIMO as opposed to co-located
MIMO. In general, ML algorithms proposed in [23], [30] have
high computational complexity.

In a quest for lower computational complexity receivers,
the approximate message passing (AMP) algorithm, first in-
troduced by Donoho et al. in [31] has been widely explored
under different settings. For instance, Bai et al. proposed a dis-
tributed AMP algorithm in [32] based on the likelihood ratio
and incorporated the structure of the state evolution. However,
it should be noted that most AMP algorithms are only guar-
anteed to converge if the columns of the pilot matrix follow
the Gaussian distribution and are uncorrelated. In general, this
property of AMP algorithms limits their practical application.
Motivated by this challenge, Rangan et al. proposed the vector
AMP (VAMP) in [33] to guarantee convergence under broader
structures of the columns of the pilot sequences. Similarly, Ma
et al. proposed the orthogonal AMP (OAMP) in [34], which
can converge under pilot sequences that are generated from
partially orthogonal matrices. As a result, both VAMP and
OAMP have been extensively explored for JADCE problems,
such as in [35], where Cheng et al. proposed the OAMP as
a solution for spatially and temporally correlated channels.
Despite this, AMP, VAMP, and OAMP are designed to work
in large-dimensional problems, hence performing poorly when
applied in small-dimensional problems [10], [35].

Notably, [23], [28]–[30], [32], [35] all assume that devices
are synchronized, which inspired Li et al. [36] to propose an
asynchronous device activity detection in CF-MIMO systems
where communication between the BSs and the CPU is
optimized. From the results of [36], it is apparent that one
of the bottlenecks of decentralized algorithms is the commu-
nication overhead incurred by increased signaling between the
different sub-processors. In a similar vein, Chen et al. in [37]
proposed a structured massive access for CF-MIMO using the
per group and the IB-K-means clustering algorithms. Their
work showed an improved spectral efficiency of the proposed
pilot assignment strategies, outperforming conventional pilot
assignments. In addition, Figueredo et al. in [38] presented a
feasibility study for improving system capacity by clustering
the MTDs such that they can share the same time-frequency
resource blocks. Iimori et al. in [39] proposed a bi-linear
message passing algorithm that efficiently detects clusters of
devices by leveraging the sparsity in the sub-arrays of extra-
large MIMO.

Despite the potential benefit of capturing the clusters of
MTDs using orthogonal pilot subspaces to facilitate efficient
parallel implementation of JADCE algorithms, this has not
been explored in the literature. Motivated by the work [40],
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where Marata et al. proposed some pilot design strategies
to enable the amicable coexistence of different services, we
present novel CS-MUD algorithms that exploit the pilot struc-
ture of the clusters of MTDs in mMTC scenarios.

B. Contributions

We consider an mMIMO network serving heterogeneous
clusters of MTDs1. By capturing the heterogeneous char-
acteristics of the MTDs using orthogonal pilot subspaces,
we present a JADCE problem and solve it using parallel
algorithms. Notice that, the present work departs from works
such as [23], [28]–[30], [32], where some iteration steps are
exchanged even in parallel implementations of the CS-MUD
algorithms. Our main contributions are as follows:

• We formulate the JADCE problem based on pilot sub-
spaces, i.e., where the massive non-orthogonal pilot se-
quences of the MTDs of each cluster are computed from
orthogonal subspaces. Some of the main advantages of
the proposed formulation are the parallel implementation
of the sparse signal recovery (SSR) algorithms, network
design flexibility, and scalability.

• We propose data-driven algorithms that utilize the ap-
proximation error method (AEM) established in the field
of inverse problems to account for errors in the sensing
matrix and likelihood function [41]–[43]. Herein, AEM is
used to account for the mismatch between the ideal mea-
surement and the measurement used to perform JADCE
in each cluster. First, we propose the AEM-alternating di-
rection method of multipliers (ADMM), which leverages
the learned statistics of the mismatch to perform iterative
soft thresholding. Second, we present the AEM-sparse
Bayesian learning (SBL) algorithm which exploits a
corrected likelihood function within the Bayesian frame-
work. AEM-ADMM does not take the prior distribution
into consideration and is applicable for scenarios without
distributions of the parameters. On the other hand, AEM-
SBL relies on statistical distributions, thus utilizing more
information to improve the JADCE performance.

• We compare the proposed JADCE framework with
the conventional approaches, which are applied with-
out clustering, and numerically quantify their perfor-
mance. Specifically, we show that our proposed algo-
rithms achieve comparable channel estimation accuracy
and detection capabilities to their classical counterparts
while benefiting from reduced run-time.

C. Organization and Notation

The remainder of this paper is organized as follows. Section
II introduces the system model. Section III presents the cluster-
based device activity detection problem. In Section IV, we
propose solutions to this problem, while Section V presents
the results and discussions. Lastly, in Section VI, we conclude
the paper and discuss some future research directions.

Notation: Boldface lowercase and uppercase letters denote
column vectors and matrices, respectively. Moreover, ai and

1Here, heterogeneity refers to differences in characteristics and performance
requirements of the MTDs.
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Fig. 1: An mMTC scenario where an M -antenna BS serves
N MTDs grouped into G clusters, among which an average
total of ϵN MTDs are active.

ai,j are the i-th column and the element in the i-row, j-
th column of matrix A, respectively, while ai is the i-the
element of vector a. The superscripts (·)∗, (·)T, and (·)H denote
the conjugate, transpose, and conjugate transpose operations,
respectively. For both matrices and vectors, the hat notation
indicates an estimate, e.g., x̂ is the estimate of x. Additionally,
C and R refer to complex and real domains, respectively. We
denote the circularly symmetric complex Gaussian distribution
with mean a and covariance B by CN (a,B), while E{·} and
V{·} are the expectation and covariance operators, respec-
tively. Additionally, U(a, b) denotes the uniform distribution
with bounds a and b. The diag{a1, a2, · · · , an} creates a di-
agonal matrix whose main diagonal terms are a1, a2, · · · , an.
Finally, ∥·∥F , ∥.∥p and ∥·∥n,p denote the Frobenius norm, ℓp
norm and mixed n, p norm, respectively, while the probability
distribution of random variables is defined as P(·), while
P(·|·) is the conditional probability.

II. SYSTEM MODEL

We consider the uplink massive MIMO scenario depicted
by Fig 1, where a BS equipped with a set of M antennas, i.e.,
M = {1, · · · ,M} serves a set N = {1, · · · , N} of stationary
MTDs. Among these, a subset K ⊂ N of cardinality K = |K|
is active and unknown to the BS. The MTDs are assumed to
be active with a probability ϵ ≪ 1, thus the average number of
active devices in the network in a given CI is ϵN . Moreover,
N is sub grouped into a set of clusters sub-indexed by G =
{1, · · · , G}, where G ≤ N and each MTD exclusively belongs
to a cluster Cg ⊆ N , g ∈ G. The cardinality of the g-th cluster
is defined as Ng , such that

∑G
g=1 Ng = N .

We also assume quasi-static block fading channels, such that
channels remain unchanged during each CI of T symbols and
change independently between CIs. We assume that only the
large-scale channel state information (CSI), i.e., the path loss
information, is available at the BS and not the instantaneous
CSI. The uplink channel between the n-th MTD in the g-
th cluster and the BS in a given CI is defined as hn,g ∼
CN (0,Qn,g) ∈ CM×1, where Qn,g is the channel covariance
matrix. Let αn,g denote the activation status of device n in
the g-th cluster as

αn,g=

{
1, if device n in the g-th cluster is active
0, otherwise

, (1)
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hence, the overall network activity indicator is given by the
vector α=[αT

1,α
T
2, · · · ,αT

G]
T ∈ {0, 1}N×1, where αg =

[αg,1, αg,2, · · · , αg,Ng ]
T ∈ {0, 1}Ng×1, ∀g. The first phase of

each CI (defined as the first L symbols) corresponds to the
metadata processing block, i.e., where JADCE is carried out,
while the other T−L symbols are used to convey the intended
message (payload). Each MTD is therefore pre-allocated a
pilot sequence sn,g ∈ CL×1 that is known to both the BS
and the MTD for JADCE2. However, due to the massiveness
of the MTDs, the length of each pilot sequence is usually
much smaller than the total number of devices, i.e., L ≪ N .
Consequently, the BS must pre-allocate non-orthogonal pilot
sequences to all the MTDs and employ CS-MUD to solve
the JADCE problem based on the signal received during the
training phase, which is given by

Y =
∑
∀n,g

αn,g
√
pn,gsn,gh

T
n,g +W

=

G∑
g=1

SgXg +W

= SX+W, (2)

where Sg=[sn,g, · · · , sNg,g], Xg=[x1,g, · · · ,xNg,g]
T ∀g,

S = [ST
1, · · · ,ST

G]
T, and X = [XT

1, · · · ,XT
G]

T. Mean-
while, W ∈ CL×M is the receiver noise, whose columns
are i.i.d. as {wm} ∼ CN (0, σ2I) ∈ CL×1, while
xn,g =

√
pn,gαn,ghn,g ∈ CM×1 and pn,g are the effective

row-sparse channel vector and the transmit power of the n-
th device in the g-th cluster, respectively.

From (2), it is evident that if {Sg}, ∀g, are created from
orthogonal subspaces, it is possible to completely decentralize
the JADCE process by performing the detection of each cluster
separately, thus reducing the complexity of the problem.
To this end, we subsequently discuss the formation of Sg ,
g=1, · · · , G, using orthogonal subspaces, which allows fully
decentralized detection and channel estimation.

III. DECENTRALIZED DETECTION AS A CS PROBLEM

To achieve decentralization, we assume that the pilot se-
quences {Sg ∈ CL×Ng} associated with each cluster are
strictly generated as linear combinations of orthogonal basis
matrices. Note that the columns of an orthogonal basis matrix
are mutually orthogonal (perpendicular) vectors [44]. For this
reason, orthogonal basis matrices provide a good foundation
for handling structured pilot design. Examples of orthogonal
basis matrices for designing pilot sequences in MTC include
the identity matrix, Hadamard matrix, and Fourier matrices,
among others [45]. However, the identity matrix lacks the
diversity required for sensing matrices [46]. Although both
the Fourier matrix and the Hadamard matrix can serve as
orthogonal basis matrices, we adopted the Hadamard matrix
due to its appealing computational and storage properties.
Let B ∈ CL×L be such a square matrix whose columns
can be partitioned into G different orthogonal matrices, i.e.,

2Given that the pilot sequences are known a priori by the BS, it is possible
to optimize their structure to improve the receive algorithms. To that end, we
also present a combinatorial problem in Section III that can be solved at the
BS to improve the detection capabilities.

B = [B1,B2, · · · ,BG] ∈ CL×L,
∥∥BH

i Bj

∥∥
F

= 0, ∀i ̸= j.
Consequently, the pilot sequences Sg of the g-th cluster
are generated from Bg ∈ CL×κg , where κg denotes the
number of columns of Bg used for the g-th cluster, such that∑

∀g κg ≤ L.
As discussed in Section I, the number of MTDs is generally

massive, and thus Ng ≥ L is a valid assumption. It is therefore
computationally prohibitive to generate large Bg . Furthermore,
the CI is always finite, thus, infeasible to allocate mutually
orthogonal pilot sequences to the MTDs belonging to the
same cluster. Owing to the condition Ng ≥ L, it is necessary
to generate each Sg while guaranteeing signal recovery for
each cluster, which is a fundamental problem in sensing
(measurement) matrix design [47]. From CS perspectives, the
matrix Sg guarantees signal recovery if it satisfies the restricted
isometric property (RIP), formally stated as

(1−δϵ) ∥Xg∥2F ≤ ∥SgXg∥2F ≤ (1+δϵ) ∥Xg∥2F ,∀Xg, (3)

such that ∥Xg∥2,0 ≤ Kg , where Kg is the average number of
active devices in a given cluster and δϵ > 0 is the restricted
isometric constant [48].

Remark 1: The RIP can be interpreted as the ability of
the matrix Sg to map Xg into the measurement space while
maintaining the separation between the different samples of
Xg . This makes it possible to recover different samples of Xg

without ambiguity.
From the Remark 1 and without any loss of generality, note

that creating pilot sequences for two different MTDs within a
cluster, i.e., si,g and sj,g , with i ̸= j, involves maximizing the
minimum distance between two distinct pilot sequences, i.e.,

maximize
Sg

min
1≤i<j≤|Cg|

d (Bgzi,Bgzj) (4a)

subject to ∥zi∥0 = ∥zj∥0, (4b)
sk,g = Bgzk, (4c)

where d(·, ·) is a generic distance measure between the two
entries, while zk ∈ Cκg×1, k ∈ Cg is a vector containing
the random combining weights with an optimized cardinality.
Observe that zk must be sparse to guarantee good detectability,
thus sk,g = Bgzk, k ∈ Cg , whereas the equality constraint (4b)
ensures fairness.

Due to its combinatorial nature, the problem in (4) is NP-
hard. To provide its approximate solution, we exploit the
procedure discussed in Section IV-B of [40]. This will yield
{Sg ∈ CL×Ng} for each cluster, resulting in a concatenated
pilot matrix S=[S1,S2, · · · ,SG] ∈ CL×N of all the devices
in the network3. This essentially leads to pilot sequences
that are orthogonal to one another for different clusters4, i.e.,
|SH

i Sj |F = 0, ∀i ̸= j. To clarify the generation of the pilot
sequences for each g-th cluster, we provide a toy example
below. Assume that B is given by equation (5) at the top

3To simplify the presentation, the matrix concatenation is assumed to follow
the order of g = 1, · · · , G.

4The pilot sequences can be fixed for longer periods of time to reduce
the computational complexity associated with indicating the indices of the
pilot sequences for each MTD. In this case, MTDs can store a list of pilot
sequences in their local memory, and the BS can indicate the N indices using
log2 N bits. Alternatively, the BS can indicate the sequence using L log2 d
bits, for a modulation scheme employing d symbols.
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B=



1 + j 1 + j 1 + j 1 + j 1 + j 1 + j 1 + j 1 + j
1 + j −1− j 1 + j −1− j 1 + j −1− j 1 + j −1− j
1 + j 1 + j −1− j −1− j 1 + j 1 + j −1− j −1− j
1 + j −1− j −1− j 1 + j 1 + j −1− j −1− j 1 + j
1 + j 1 + j 1 + j 1 + j −1− j −1− j −1− j −1− j
1 + j −1− j 1 + j −1− j −1− j 1 + j −1− j 1 + j
1 + j 1 + j −1− j −1− j −1− j −1− j 1 + j 1 + j
1 + j −1− j −1− j 1 + j −1− j 1 + j 1 + j −1− j


︸ ︷︷ ︸

B1

︸ ︷︷ ︸
B2

︸ ︷︷ ︸
B3

, (5)

Fig. 2: Mutual coherence as a function of L, G, and N .

of the next page, and thus L = 8, κ1 = 3, κ2 = 3, and
κ3 = 2. Focusing now on cluster 2, for which S2 is formed
from a linear combination of the columns of B2 ∈ CL×3. For
instance, let z1 = [1 0 1]T and z2 = [0 1 1]T, s̄1,2 and s̄2,2 be
vectors generated by

s̄1,2=B2z1=[2+2j,−2+2j, 0, 0, 0, 0,−2−2j, 2+2j]T, (6)

s̄2,2=B2z2=[2+2j, 0, 2+2j, 0,−2−2j, 0,−2−2j, 0]T, (7)

which are normalized, i.e., s1,2 =
s̄1,2

∥s̄1,2∥ 2
and s2,2 =

s̄2,2

∥s̄2,2∥ 2
to form S2 = [s1,2, s2,2, · · · , sNg,2]. Note that the resulting
matrices {Sg} can have highly correlated columns, which can
restrict the applicability of certain state-of-the-art CS-MUD
algorithms that rely on the AMP framework [10], [49]. To
exemplify, we illustrate in Fig. 2 the maximum correlation
between two different columns, i.e., the mutual coherence as
a function of the number of MTDs (N ) and clusters G. From
the results, a relatively large number of clusters and a relatively
small L can increase the mutual coherence. This kind of result
can therefore provide a guide on the proper choice of L and
G for a given number of MTDs.

A. Device Activity Detection as a CS problem

From definition (1) and the fact that traffic from MTDs is
normally sporadic, the recovery of X constitutes a CS-MUD
problem that can be solved using SSR concepts. Specifically,
the BS has to identify the active devices from the compressed

measurement Y with the knowledge that X is row-sparse.
We can therefore define a generic inverse operation f of
the form X̂ = f(Y,S), that maps the measurement into the
effective channel space. Furthermore, due to the orthogonality
of the subspaces, the inverse operation can further be cast
as X̂g = f(Yg,Sg) if Yg is precisely known. Here, it
is apparent that X̂ would be a solution from a centralized
problem such as those in [10], [50], while X̂g would yield a
solution for each cluster. Such an inverse operation can be
formulated by exploiting Bayesian theory and/or a relaxed
convex optimization framework.

For the Bayesian formulation, the sparsity promoting dis-
tribution of the effective channel X at each group level and
within each group is modeled using the Bernoulli-Gaussian
mixture distribution as [39]

P(X)=
∏
n,g

(
(1− ϵ)δ(xn,g) + ϵCN (xn,g;0, Q̃n,g)

)
, (8)

where δ(·) is the Dirac delta function imposing xn,g = 0
with a probability of 1 − ϵ, while Q̃n,g = pn,gQn,g is the
effective covariance matrix. From a mathematical perspective,
precise knowledge of the linear problem (2) and (8) makes it
possible to compute a Bayes optimal f to recover X̂ using the
maximum a posterior (MAP) estimate. As a consequence, the
optimal JADCE algorithm chooses a pair of α and X using

α̂=argmax
α

∫
P(X,α|Y)dX, (9)

X̂=argmax
X

∫
P(X,α|Y)dα (10)

from the joint posterior distribution

P(X,α|Y) ∝ P(Y|X,α)P(X|α)P(α). (11)

However, the detector that computes (9) and (10) is not
practically implementable in a receiver. Firstly, there is a lack
of precise information about the activation probabilities of
the MTDs and that makes it difficult to formulate the prior
distribution P(X) accurately. Secondly, even if the prior distri-
bution can be accurately computed, the marginalization of (11)
requires prohibitively high dimensional integrals/summations
with respect to a large number of variables in mMTC scenar-
ios. Hence, most solutions to (9) and (10) are sought using
alternative approaches.

A common approach that relaxes the complex marginaliza-
tion is to approximate the joint posterior distribution using
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belief propagation [51]. Such an approach yields an efficient
solution via the sum-product algorithm. Another approach
involves the approximation of the posterior distribution using
mean field techniques, under which the solution is found
through variational message passing [52], [53]. Alternatively,
the solution can be sought from the relaxed convex optimiza-
tion formulation

minimize
X

1

2
∥Y − SX∥2F +λ ∥X∥2,1 , (12)

where λ ∈ R+ serves as a penalty term that trades off
measurement fidelity and sparsity structure captured by the
mixed ℓ2,1 norm. Nevertheless, observe that (12) can also
be computationally burdensome for large-scale problems and
its effectiveness depends on properly choosing the penalty
term. This is evidently sub-optimal compared to its Bayesian-
based counterparts. However, it can achieve reasonable results
and there have been some research efforts directed towards
executing its solution in parallel, e.g., [54], [55]. As alluded
to earlier, such parallel implementations cannot reap the full
benefits of the proposed pilot-based cluster model because
they rely on the ability to decompose the objective function as
opposed to the possible isolation of the clusters of the MTDs.
In the end, their parallel implementations require the exchange
of the updates of the Lagrange multipliers. We subsequently
present the AEM-inspired SSR solutions that perform JADCE
while considering the existence of clusters.

IV. APPROXIMATION ERROR METHOD INSPIRED SPARSE
RECOVERY

Considering that problem (2) is formulated such that the
pilot sequences Si and Sj of Ci and Cj , i ̸= j, respectively,
are orthogonal to each other, then the JADCE is broken down
into smaller problems, one for each cluster. For example, the
signal processing at the g-th cluster can depart from

X̃g=SH
gY. (13)

Interestingly, if the devices follow URA or have correlated
activity, their joint activity can be estimated using ∥X̃g∥F ≥ ζ,
where ζ should be greater but relatively close to 1√

L
σ for good

performance. The ability to handle both URA and correlated
activity provides the much needed flexibility in pilot sequence
allocation. For example, there is a flexibility to allocate larger
basis matrices Bg to devices that require more resources, such
as those used in URLLC systems, as discussed by Lopez et
al. in [20].

Observe that the decorrelation step (13) isolates the different
clusters. However, X̃g resulted from a backward projection of
the measurement into the solution space, thus, relying on this
statistic for the JADCE can lead to sub-optimal performance.
This is because the majority of existing algorithms are specif-
ically designed to utilize the low-dimensional measurements
captured by Y in order to compute X̂. Evidently, X̃g leads to
the loss of crucial structures in the signal that is used for the
JADCE at each cluster.

Remark 2: Observe from (13) that most CS-MUD algo-
rithms that have the correlation step SH

j Y, j ∈ G among their
iterative steps can provide a naive solution of the cluster based
JADCE.

Algorithm 1: CB-SOMP, ∀g ∈ G
Input: Y, ∆

1 X̂
(0)
g = 0

2 R
(0)
g = Y, t = 0, H(0)

g = ∅
3 repeat
4 D(t) = SH

gR
(t)
g

5 j(t) = argmaxj


∥∥∥d(t)

j

∥∥∥
1

∥sj∥2


6 H(t) = H(t) ∪ j(t)

7 X
(t)

[H(t)]
= S†

[H(t)]
Y

8 R(t) = Y − SX(t)

9 t = t+ 1

10 until ∥X(t)−X(t−1)∥
F

∥X(t)∥
F

< ∆;

Output: X̂g = X(t)

Following the Remark 2, we exemplify the implementation
of the naive solution via simultaneous orthogonal matching
pursuit (SOMP) [56]. In order to differentiate it from the
traditional implementation of SOMP, we refer to the cluster-
based implementation as cluster-based SOMP (CB-SOMP),
which is outlined in Algorithm 1. In all the algorithms, ∆
is the error tolerance level used in the stopping criteria.

As previously mentioned, the backward projection can be
detrimental to the receiver’s performance. A classical solution
to map X̃g back into the measurement space of each of the
clusters is by using

Ŷg = (SgS
H
g )

−1SgX̃g. (14)

Meanwhile, similar to (11), the resulting reduced MAP prob-
lem has the joint posterior distribution

P(Xg,αg|Ŷg)∝P(Ŷg|Xg,αg)P(Xg|αg)P(αg). (15)

It is important to note that the resulting MAP problem has
lower dimensions than the one handled without clusters. In
spite of this, a major drawback comes from the fact that the
matrix Sg from (4) is of very low rank, and thus its pseudo-
inverse results in a mismatched measurement, i.e.,Ŷg ̸= Yg ,
even under noise-free conditions. Motivated by the AEM
method from inverse problems and Bayesian AEM in [42],
we account for this mismatch by imposing data-driven model
corrections. Note that this data-driven correction is based
on statistical learning and aims to estimate the mean and
covariance of the mismatch error, different from machine
learning techniques. The following subsection provides a brief
background of the AEM-inspired solutions.

A. Review of AEM

This subsection briefly introduces the AEM [42], [43], [57],
which is used to develop the proposed JADCE algorithms.
AEM is utilized to address the numerical error between Ŷg

and Yg resulting from the pseudo-inverse operation (14),
particularly when Sg is low-rank, as considered in the sequel.
For this reason, Ŷg is not a reliable measurement of the
received signal corresponding to the g-th cluster. However,
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the aim of JADCE is to recover/estimate a hidden variable
Xg using some set of measurements while relying on their
ideal linear relationship. This linear relationship is defined by
a measurement matrix Sg , which is assumed to be well known
in advance and contains all the necessary information about
how Xg is mapped into Yg . Such a relationship is modeled
in noiseless scenarios by

Yg=SgXg. (16)

To that end, relying solely on Ŷg to recover the hidden variable
Xg is tantamount to using an incorrect linear model, thus,
equivalent to using an incorrect measurement matrix.

Let S̃g be the unknown and incorrect measurement matrix,
then the relationship that yields Ŷg can be modeled by

Ŷg= S̃gXg, (17)

and introduces a systematic model error

∆Yg=Yg−Ŷg. (18)

Failure to account for this error has a negative impact on
the JADCE performance. Fortunately, this discrepancy can
be corrected by leveraging AEM concepts from the field of
inverse problems [42], [57]. This is achieved by solving for
Xg using a corrected version of the measurement matrix S̃g ,
and thus providing a general framework for CS-MUD that
can be applied in cases where the sensing matrix has errors
[58]. Essentially, we can approximate Sg by CgS̃g ≈ Sg ,
where Cg represents the correction term associated with the
model error (18) and that can be obtained through statistical
training. Since the MTDs are considered to be stationary, it is
possible to acquire each Cg offline. In addition, this training
process does not contribute to the computational complexity
of the JADCE solutions. Precisely, Cg is computed from the
covariance matrix of the model error, i.e., Φg , as will be
discussed at the beginning of Section IV-B. First, the model
error can be acquired in each cluster and considering τ training
samples using

Eg(i)=SgXg(i)−Ŷg(i), i = 1, · · · , τ. (19)

Here, Eg(i) = [e1(i), · · · , eM (i)], where,
em(i) = Sgxm(i)− S̃gxm(i), corresponds to the mismatch
error at the m-th antenna for the i-th training sample. By
training with (19), the average mismatch error for the m-th
antenna is given by µm =

∑τ
i=1 em(i)/τ . Then, the sample

error covariance matrix of the mismatch error at the m-th
antenna in a cluster is given by

Ωm =
1

τ − 1

τ∑
i=1

em(i)em(i)H − µmµ
H
m, (20)

which converges to the population error covariance matrix as
τ → ∞.

Remark 3: Given that the MTDs are stationary and by
relying on the law of large numbers, the average covariance
of the mismatch error for the g-th cluster is Φg = E{Ωm}.

Following this remark, we next introduce Cg into the
optimization problem (12) and subsequently present the AEM-
inspired JADCE solutions that are data-driven for each cluster.

B. Solution via AEM-ADMM

The first AEM-inspired solution is derived via the ADMM
framework that relies on the iterative soft threshold algorithm
(ISTA). From the discussion of the AEM, we note that the
noisy measurement for each cluster is related to the results of
its pseudo-inverse by

Yg = SgXg +Eg +W = Ŷg +Eg ,∀g, (21)

where Eg is the model error from (19) and W comes from
(2). Given this, the net error from noise and the model error
is defined as Ξg = [ξ1, · · · , ξM ], such that Ξg = Eg+W.
By relying on the law of large numbers, we approximate
each column of Ξg by a Gaussian variable, i.e., ξm = e1+
wi ∼ CN (ψm,Ωm), where ψm is acquired through training,
similar to µm. Given its Gaussian nature, ξm has a precision
matrix with the Cholesky decomposition CT

gCg = Φ−1
g and

thus facilitates the formulation of the exponential likelihood
function [42]

P(Yg|Xg) ∝ exp

(
−1

2

∥∥∥Cg

(
SgXg−Ŷg+Ψg

)∥∥∥2
F

)
, (22)

where Ψg = [ψ1, · · · ,ψM ]. Hence, the JADCE solution is

X̂g=argmax
Xg

P(Yg|Xg)P(Xg)

(a)
= argmax

Xg

lnP(Yg|Xg) + lnP(Xg)

(b)
= argmin

Xg

1

2

∥∥∥Cg

(
SgXg−Ŷg+Ψg

)∥∥∥2
F
+λ∥Xg∥2,1, (23)

where (a) comes from using the logarithmic form, while (b)
leverages (22) while taking λ∥Xg∥2,1 as an approximation of
−lnP(Xg). Notice that λ trades off between the measurement
fidelity and the sparsity of the solution.

To implement (23) via the ADMM framework [54], [55],
we reformulate (23) for each cluster g ∈ G as follows

minimize
Xg,Zg

1

2

∥∥∥Cg

(
SgZg − Ŷg +Ψg

)∥∥∥2
F

+ λ ∥Xg∥2,1 +
ρ

2
∥Xg − Zg∥2F (24a)

subject to Xg = Zg, (24b)

where ρ is the ADMM step size and Zg = [zn,g, · · · , zNg,g]
T

is the auxiliary variable that facilitates the closed form update
of the estimate of Xg through the Moreau-Yosida regular-
ization [54]. Following the formulation (24), the augmented
Lagrangian is expressed as [54]

L (Xg,Θg)
(a)
=

1

2

∥∥∥Cg

(
SgZg−Ŷg+Ψg

)∥∥∥2
F
+λ ∥Xg∥2,1

+ΘT
g (Xg−Zg) +

ρ

2
∥Xg − Zg∥2F

(b)
=

1

2

∥∥∥Cg

(
SgZg−Ŷg+Ψg

)∥∥∥2
F
+λ ∥Xg∥2,1

+

∥∥∥∥Xg−Zg+
Θg

ρ

∥∥∥∥2
F

−
∥Θg∥2F

2ρ
, (25)

where Θg = [θ1,g, · · · ,θNg,g] ∈ CM×Ng is the dual matrix
for the augmented Lagrangian. The expression of L (Xg,Θg)
in (a) is the standard augmented Lagrangian function, while
(b) is the scaled Lagrangian form [54]. The JADCE is
solved via AEM-ADMM by updating the set of variables
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Algorithm 2: AEM-ADMM, ∀g ∈ G
Input: Ŷg , ∆, Cg , Ψg

1 Initialisation: X(0)
g = 0, Z(0)

g = 0, Θ(0)
g = 0, t = 0

2 repeat
3 Update Z

(t+1)
g using (30)

4 Update X
(t+1)
g using (32)

5 Θ
(t+1)
g = Θ

(t)
g + ρ

(
X

(t+1)
g − Z

(t+1)
g

)
6 t = t+ 1

7 until ∥Z(t+1)
g −Z(t)

g ∥
F∥∥∥Z(t)

g

∥∥∥
F

< ∆;

Output: X̂g = Zg

{Xg ,Zg ,Θg} in an alternating manner. Precisely, the sub-
problems corresponding to the variables are each given in the
(t+ 1)-th iteration by

Z(t+1)
g =min

Zg

L
(
X(t)

g ,Zg,Θ
(t)
g

)
=min

Zg

1

2

∥∥∥Cg

(
SgZg−Ŷg+Ψg

)∥∥∥2
F

+

∥∥∥∥∥X(t)
g −Zg+

Θ
(t)
g

ρ

∥∥∥∥∥
2

F

, (26)

X(t+1)
g = min

Xg

L
(
Xg,Z

(t+1)
g ,Θ(t)

g

)
= min

Xg

∥Xg∥2,1 +
ρ

2
∥Xg − Z(t+1)

g +
1

ρ
Θ(t)

g ∥2F, (27)

Θ(t+1)
g = Θ(t)

g + ρ
(
X(t+1)

g − Z(t+1)
g

)
, (28)

such that Z(t+1)
g is updated by minimizing (26) with respect

to Zg while holding all the other variables constant. That is,
computing the derivative with respect to Zg , setting it to zero
and solving for Zg as follows

∂L
(
X

(t)
g ,Zg,Θ

(t)
g

)
∂Zg

= SH
gC

H
gCgZg + ρZ− ρX(t)

g +Θ(t)
g

−SH
gC

H
gCgŶg + SH

gC
H
gCgΨg = 0, (29)

which leads to

Z(t+1)
g =

(
SH
gC

H
gCgSg + ρINg

)−1 ×(
ρX(t)−Θ(t)

g +SH
gC

H
gCgŶg−SH

gC
H
gCgΨg

)
. (30)

Similarly, the computation of X(t+1)
g involves minimizing (27)

with respect to Xg . By observing that (27) is the Moreau
envelope of the mixed norm ∥Xg∥2,1, we can update Xg

based on the results obtained from (30). Therefore, in order to
enforce the sparsity of the solution to JADCE, the ℓ2 norms
of the rows of Xg must be sparse. We can denote the norms
of the rows of Xg by x̄g ∈ RNg×1, such that we update Xg

by solving

X(t+1)
g = min

Xg

∥x̄g∥1 +
ρ

2

∥∥∥Xg −Π(t+1)
g

∥∥∥2
F
, (31)

where Π
(t+1)
g = Z

(t+1)
g + 1

ρΘ
(t)
g , and using the proximal

operator method [54], one obtains Ng decoupled solutions [59]

x(t+1)
n,g = proxλ,∥x̄g∥1

(Π(t+1)
g , ρ)

=π(t+1)
n,g

max{∥π(t+1)
n,g ∥−ρ−1, 0}
∥π(t+1)

n,g ∥
, n=1,· · ·, Ng. (32)

A summary of AEM-ADMM is presented in Algorithm 2.
Note that the AEM-ADMM inherits the properties of classical
ADMM [54] and thus has slow convergence to the best pos-
sible accuracy, even though, most of its results are acceptable
for the JADCE framework. Next, we present the AEM-SBL
which is the Bayesian solution and thus exploits the statistical
distributions of the observations and the prior.

C. Solution via AEM-SBL

The AEM-ADMM developed in Section IV-B relies on a
sparsity promoting penalty and not on the explicit prior distri-
bution P(Xg), which may be highly sub-optimal. Therefore,
we introduce the AEM-SBL, another AEM-inspired JADCE
solution that relies on the SBL framework [22], [60]. Given
its Bayesian nature, AEM-SBL exploits P(Xg), which is a
clear advantage over AEM-ADMM. The AEM-SBL uses the
joint posterior distribution

P(Xg,Γg|Yg)=
P(Yg|Xg,Γg)P(Xg|Γg)P(Γg)

P(Yg)

=
P(Ŷg+Ψg|Xg,Γg)P(Xg|Γg)P(Γg)

P(Yg)
, (33)

where the second step follows from the corrected likelihood
(22), for which P(ym|xm) ≈ CN (Smxm,Φg) as a result of
AEM, while Γg = diag{γg}, where γg = {γ1,g, · · · , γNg,g} ∈
RNg×1

+ are the sparsity promoting hyper-parameters in each
cluster. Notice that the diagonal precision matrix Γg of these
hyper-parameters creates a fixed sparsity pattern across each
row of X̂g , and thus allowing the decomposition of the joint
posterior distribution in each cluster as

P(Xg,Γg|Yg) ∝
M∏

m=1

P (ŷm+ψm|Sgxm)×

Ng∏
n=1

P (xn,g|γn,g)
Ng∏
n=1

P (γn,g) . (34)

This enables the independent update of γn,g and xn,g as will
be shown later.

Following the conventional SBL framework, the AEM-SBL
uses (34) to find γg and Xg using AEM corrected expectation
(E) step and the maximization (M)-step, respectively [60],
[61]. To facilitate this, we define the AEM-SBL cost as a
function of γg at each cluster, i.e.,

γg = argmax
γg

lnP(γg|Ŷg +Ψg)

∝ argmax
γg

lnP(Yg|γg)P(γg). (35)

Note that the problem (35) requires the marginalization of
P(Xg,Yg,γg) with respect to Xg , which can be solved
iteratively using EM. Therefore, in the (t + 1)-th iteration,
the corrected E-step is computed using the log-likelihood of
the complete joint distribution with respect to the posterior
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Algorithm 3: AEM-SBL, ∀g ∈ G
Input: Ŷg , ∆, Cg

1 Initialization: X0 = 0, X0 = 0, Γ(0) = 1Ng×1, t = 0
2 repeat
3 Update X

(t+1)
g using (38)

4 Update Γ(t+1) using (42)
5 t = t+ 1

6 until ∥X(t+1)
g −X(t)

g ∥
F∥∥∥X(t+1)

g

∥∥∥
F

< ∆;

Output: X̂g = X
(t)
g

distribution that is parameterized on the previous estimate of
γg , i.e., P(xm|ym,γ

(t)
g ). Let this expectation be defined by

J(γg, γ̂
(t)
g ) = EP(xm|ym,γ̂

(t)
g )

lnP(xm,ym|γg)

= EP(xm|ym,γ
(t)
g )

[lnP(xm|γg)

+ lnP(ym|xm) + lnP(γg)],∀m ∈ M. (36)

The decomposition presented in (34) allows expressing the
complete expectation as follows

J(γg, γ̂g) ∝
Ng∑
n=1

lnγn,g − EP(xg|yg,γ
(t)
g )

[∥xn,g∥2], (37)

where the posterior distribution P(xm|ym, γ̂
(t)
g ) of (36) is

parameterized in the AEM framework by the corrected mean
and covariance, respectively given by

x̂m = ΣgS
H
gΦ

−1
g (ŷm +ψm) ,∀m ∈ M,

Σg =
(
SH
gΦ

−1
g Sg+Γ(t)

g

)−1

. (38)

Note that each diagonal entry of Σg , which we denote by
{νn,g} is common for all the entries of xn,g . Further, the
second term of (37) can be simplified by [62]

EP(xg|yg,γ̂
(t)
g )

[∥xn,g∥2] = EP(xg|yg,γ
(t)
g )

[∥xn,g∥]2

+ VP(xg|yg,γ
(t)
g )

[xn,g], (39)

thus, for the n-th device in the g-th cluster

J(γn,g, γ̂n,g) ∝ lnγn,g − γn,g(∥x̂n,g∥2 + νn,g). (40)

In the M-step, the hyper-parameters are computed for each
MTD by solving (35) as follows

∂J
(
γn,g, γ

(t)
n,g

)
∂γn,g

=
1

γn,g
− (∥x̂n,g∥2 + νn,g) = 0, (41)

which leads to

γ(t+1)
n,g =

1

∥x̂n,g∥2 + νn,g
, ∀g, n. (42)

A summary of the AEM-SBL is given by Algorithm 3.

D. Complexity Analysis

The computational complexity of the algorithms is given in
Table I in terms of the big-O notation, which considers rele-
vant mathematical operations, e.g., matrix multiplications and
inversions. Motivated by the dependency of AEM-ADMM and
AEM-SBL on the pre-processing steps (13) and (14), we an-
alyze their computational complexity, which is O(NLM

G ) and

TABLE I: Computational complexity of JADCE algorithms

Algorithm No. operations per iteration Complexity

ADMM N2M+NM2 +MLN O(N2M+NM2)

AEM-ADMM N2M
G2 +NM2

G
+MLN O(N

2M
G2 +NM2

G
)

SBL N2L+N2+NM O(N2L)

AEM-SBL N2L
G

+N2

G
+ NM O(N

2L
G

)
SOMP (2L+1)MN+L(M2+M+1) O(LMN)

CB-SOMP (2L+1)MN+L(M2+M+1) O(LMN)

O
(

L2N
G + L3 + NLM

G

)
, respectively. The most computation-

ally expensive operation in the pre-processing is (SgS
H
g )

−1Sg ,

which has a complexity of O
(

L2N
G + L3

)
. Fortunately, this

operation can be pre-computed and remain valid until the pilot
allocation changes e.g., when the number of devices changes,
consequently reducing the complexity of the pre-processing
step to O(NLM

G ). All in all, notice that O(NLM
G ) goes down as

the number of clusters increases, and thus AEM-ADMM and
AEM-SBL have reduced computational complexity compared
with their conventional implementations. To this end, the
proposed cluster-wise AEM algorithms are bound to have
shorter runtime, mainly due to the parallel processing of
reduced size problems as shown in the next section.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the results of the proposed AEM-
ADMM and the AEM-SBL in comparison to other JADCE
approaches. The numerical results are presented in terms of
the channel estimation accuracy, detection capabilities, and
scalability via the normalized mean squared error (NMSE),
the average probability of miss detection (PMD), and the
algorithm run-time, respectively. To clarify, we will only
present the performance metrics for cluster-wise performance
as they can be easily extended to evaluate the performance of
centralized algorithms such as ADMM, SOMP, and SBL.

The channel estimation accuracy is evaluated using the
NMSE defined by

NMSEi=Ei,g

(
∥xi,g − x̂i,g∥2

∥xi,g∥2

)
, i ∈ Kg. (43)

For PMD, we first estimate the activity vector α̂g ∈
{0, 1}Ng×1 using

α̂n,g=

{
1, if ∥x̂n,g∥2 ≥ ζ

0, otherwise
, (44)

where ζ is the threshold. The value of ζ is set by initially
computing the receiver operating characteristics over a range
of 104 thresholds, spanning from zero to the highest energy
level of all the effective channels, and selecting the threshold
that achieves the fixed target probability of false alarm (PFA)
indicated in Table II. It then follows that the PMD is computed
using

PMD = E

(∑Ng

n=1 max(0, αn,g − α̂n,g)

|Kg|

)
. (45)
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TABLE II: Simulation parameters

Parameter Value
Cell radius 250 m
Number of MTDs (N) 1000
Number of clusters(G) 4
Bandwidth 20 MHz
Noise power (σ2) 2×10−13 W
Coherence interval (T ) 300
Length of the pilot sequences (L) 64
Number of BS antennas (M) 32
Activation probability (ϵ) 0.01
Average SNR 10 dB
Error tolerance (∆) 10−4

Target PFA 10−3

The run-time performance is evaluated in seconds, thus related
to the number of iterations and the computational complexity
analysis that was presented in Table I.

A. Simulation Setup

We consider a single-cell massive MIMO uplink network
with a radius of 250 m, where the BS serves 1000 MTDs ran-
domly placed within the cell. Our proposal operates indepen-
dently of how the clusters are formed. In the simulations, we
randomly and uniformly partition the MTDs into G = 4 clus-
ters before the JADCE. For simplicity, we adopt a log-distance
path loss model such that βn,g = −130 − 37.6 log10 dn,g ,
where dn,g is the distance between the n-th MTD in the
g-th cluster and the BS. We consider two different setups:
i) uncorrelated channels, for which Qn,g = βn,gI and ii)
spatially correlated channels, for which the matrix Qn,g is
generated using the approximated Gaussian local scattering
model with a half-wavelength antenna separation as described
in [45]. The k-th row and m-th column entries of the matrix
are computed by

[Qn,g]k,m=
βn,g

Lp

Lp∑
i=1

exp(πj(k−m) sinϕ(i)
n,g)×

exp(−1

2
σ2
ϕn,g

π(k−m) cosϕ(i)
n,g), (46)

where Lp is the number of multi-path components. Addition-
ally, ϕ

(i)
n,g ∼ U(ϕ̄n,g − 2π

9 , ϕ̄n,g + 2π
9 ) is the nominal angle

of the i-th multipath cluster distributed around the azimuth
angle ϕ̄n,g of the n-th MTD in the g-th cluster relative to
the boresight of the BS antenna array. The angular standard
deviation of the paths within the multipath cluster is denoted
by σϕn,g

, while complex Hadamard matrix is adopted as the
basis matrix B of the pilot sequences. Unless otherwise stated,
the simulations are performed using the parameters provided
in Table II. The figures display results obtained by averaging
over 103 Monte Carlo simulations.

B. On the length of the pilot sequences

In Fig. 3, we assess the impact of the pilot lengths on the
performance of the JADCE algorithms. Specifically, Fig. 3(a)
illustrates how the NMSE varies with the under-sampling

Fig. 3: Performance in terms of a) NMSE (top), b) PMD
(middle), and c) run-time (bottom) as a function of the pilot
length.

ratio, which measures the ratio of the pilot length to the
number of devices in the network, i.e., L

N . In general, the
results show that the channel estimation improves with the
pilot length-to-device ratio. This is primarily because higher
values of L

N enable the BS to allocate more resources during
the training phase, thereby improving the accuracy of the
CSI. In addition, a higher L

N ratio results in longer pilot
sequences, which can promote orthogonality between the pilot
sequences of different MTDs, leading to fewer pilot collisions
in the network and a higher quality of the channel estimate.
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Accordingly, as L
N increases, the JADCE algorithms benefit

from improved RIP of the matrix Sg . It is noteworthy that both
AEM-SBL and AEM-ADMM exhibit similar performance
to ADMM and SBL while solving smaller-sized problems.
Therefore, both AEM-ADMM and AEM-SBL are highly
efficient methods for performing channel estimation under
practical conditions in mMTC, particularly when the pilot
length is much smaller than the number of devices in the
network, i.e., with L ≪ N . From the same results, CB-SOMP
(Algorithm 1) exhibits poorer channel estimation capabilities
than the classical SOMP. This underperformance of CB-SOMP
can be attributed to its reliance on a completely mismatched
model, thereby highlighting the importance of accounting
for such mismatches, as demonstrated by our AEM-inspired
algorithms (AEM-ADMM and AEM-SBL). Conversely, while
SOMP and ADMM do not leverage the clustering structure,
they exhibit strong performance under larger pilot lengths,
which is impractical for mMTC applications. From the results,
it is evident that both the SBL and AEM-SBL algorithms
significantly outperform VAMP. Although VAMP has high
efficiency with near-Gaussian sensing matrices, it is limited
in this setting due to the departure of the sensing matrix’s
structure from the Gaussian assumption [10]. Furthermore,
as discussed in Section I-A, VAMP and other AMP-related
algorithms are sub-optimal in problem dimensions such as the
currently considered short pilot lengths, which are practical
for mMTC.

Fig. 3(b) shows how the PMD is affected by L
N . In gen-

eral, the PMD decreases with the pilot-to-device ratio. In
connection with the results of Fig. 3(a), this is due to the
reduced pilot collisions of the different MTDs. Remarkably,
the AEM-SBL outperforms the conventional SBL under this
metric as it benefits from reduced inter-cluster MUI, making
it efficient in imposing the row sparsity in the recovery of the
matrix Xg . Furthermore, AEM-ADMM outperforms ADMM
in terms of this metric by efficiently handling the MUI, thereby
providing a low-complexity alternative JADCE solution for
clustered mMTC. To substantiate this, we analyze the runtime
as a function of L in Fig. 3(c). From this figure, it is evident
that AEM-ADMM and AEM-SBL are more scalable than their
classical counterparts. For example, the AEM-SBL runs five
times faster than the SBL as L increases. Although Table I
indicates that both AEM-ADMM and ADMM’s runtimes are
insensitive to L, it is worth mentioning that the former exhibits
nearly 10 times faster runtime than the latter as L increases,
attributed to its faster convergence. Despite its faster runtime
compared to SOMP, CB-SOMP generally produces poor re-
sults, as demonstrated in Figure 3(a) and 3(b). Interestingly,
even though poorly performs under the current setting, the
VAMP is highly scalable, which is consistent with the results
in [10], [31], [33], [35].

In Fig. 4, we analyze the impact of the proposed pilot
sequences on the performance of JADCE when using AEM-
SBL, considering both correlated and uncorrelated Rayleigh
fading channels. Generally, we observe that the performance
improves with increasing pilot lengths, although it eventu-
ally reaches a saturation point under the correlated channel
model. Notably, even though both Gaussian and Bernoulli

Fig. 4: Performance as a function of the pilot length for
uncorrelated channels and spatially correlated channels with
σϕn,g

= {5◦, 10◦, 30◦} using AEM-SBL.

matrices are not orthogonal basis, they substantially improve
the performance of JADCE as L increases. In spite of not
being an orthogonal basis, longer lengths of the Gaussian
and the Bernoulli sensing pilot sequences improve the ap-
proximation of Ŷ, which improves the detection capabilities
of the AEM-SBL. Consistent with the results of [10], the
Bernoulli pilot sequences have better capabilities in facilitating
JADCE. However, it is more practical to have very low pilot-
to-device ratios for scenarios with a massive number of devices
transmitting short packets, such as MTDs. In view of this,
the proposed cluster-based pilot performs better than the other
pilot sequences in a practical setting. For instance, observe that
with the proposed pilot sequences, it is possible to get a PMD
of less than 0.001, while Bernoulli-based pilot sequences and
the Gaussian both achieve a PMD greater than 0.01 for the
pilot-to-device ratio of less than 0.1. In general, the AEM-
SBL portrays the same performance trend for correlated and
uncorrelated channels, with the only difference being that
the performance is generally poorer under strong spatially
correlated channels, such as the case of σϕn,g = 5◦. However,
this is an expected phenomenon because correlated channels
reduce the channel hardening [45].

C. On the average SNR

In Fig. 5, we present the performance results as a function
of the average SNR. Specifically, Fig. 5(a) illustrates the per-
formance in terms of the NMSE. As shown, the performance
of all the JADCE algorithms improves as the signal power
gets higher than the noise power, i.e., increasing average SNR.
In spite of this, CB-SOMP doesn’t improve in performance
due to its reliance on the mismatched model. In view of this,
increasing SNR increases the amount of the mismatch, thus
resulting in inferior performance than other algorithms. For
both AEM-SBL and AEM-ADMM, the AEM tends to correct
the mismatch more accurately with increased power levels,
and this results in their superior performance at high SNR.
On the other hand, Fig. 5(b) shows the performance of AEM-
SBL and SBL in terms of the PMD under the uncorrelated
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Fig. 5: Performance in terms of a) NMSE (top), b) PMD
(bottom) as a function of the SNR for uncorrelated and
spatially correlated channels with σϕn,g ∈ {5◦, 10◦, 30◦} using
AEM-SBL.

Raleigh fading channel. In addition, we evaluate the perfor-
mance of AEM-SBL for varying degrees of spatial correlation.
Generally, both algorithms demonstrate improved detection
capabilities, reflected by low PMD as the SNR increases. From
the figure, AEM-SBL exhibits superior detection capability
compared to SBL, despite Fig. 5(a) showing slightly better
NMSE for SBL. However, it is important to note that the
performance of PMD depends on the threshold setting, which
is set to obtain PFA = 10−3 in the sequel. Therefore, we
cannot claim the algorithmic superiority of AEM-SBL solely
based on this threshold. Nonetheless, both AEM-SBL and SBL
demonstrate comparable performances, while AEM-SBL has
shorter run-times. However, as the correlation in the channel
increases, i.e., σϕn,g

decreases, the performance of AEM-SBL
is degraded due to the loss of channel hardening.

D. On the number of antennas in the BS

In Fig 6, we present the performance results as a function
of the number of antennas in the BS. The overall trend of
Fig. 6(a) indicates that all the algorithms improve the channel
estimation accuracy as the number of antennas at the BS
increases. This is mainly because the increase in M provides
an additional structure that can be exploited during the signal
recovery process [10], [50]. However, the improvements get

Fig. 6: Performance in terms of a) NMSE (top), b) PMD
(middle), and c) run-time (bottom) as a function of the number
of antennas.

to saturation as shown by no substantial improvement beyond
M = 20, which is consistent with the results of [10]. We also
note that both the AEM-SBL and SBL outperform the other
algorithms due to their Bayesian nature. Similarly, in Fig. 6(b),
the performance in terms of the PMD show an improvement
as the number of antenna increases and this is due to the
high resolution of the MMV problem under a large number of
antennas [63]. However, it is important to note that increasing
M has a substantial impact on the run-time and scalability of
the algorithms as illustrated in Fig. 6(c), where it is shown
that the run-time significantly increases with the number of
antennas. This is due to the increasing matrix dimensions. In
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Fig. 7: NMSE as a function of ϵ.

spite of this, it is evident that both AEM-SBL and AEM-
ADMM run faster than their conventional counterparts, thus
they may facilitate network scalability. This is one of the major
benefits of the proposed algorithms, which exploit the structure
of the sensing matrix.

E. On the activation probability

In Fig. 7, we analyze the impact of the activation probability
on the JADCE performance of the algorithms by evaluating
NMSE. It can be observed that all the algorithms perform
poorly with decreasing sparsity level, i.e., as more devices
are activated at the same time (high ϵ). This is due to the
fact that there is an increase in MUI in each cluster when
the sparsity is decreased. Notably, the AEM-based algorithms
demonstrate comparable efficiency to their counterparts by
efficiently reducing the MUI, while handling JADCE problems
of reduced dimensions.

F. On the cluster sizes

Fig. 8 shows the performance in terms of the run-time as a
function of the number of MTDs and clusters. Results show
that the run-time increases with the number of devices. For
instance, with N = 64, SBL runs for less than 0.1 seconds,
while N = 8192 takes approximately 100 seconds. This agrees
and corroborates the complexity analysis in Table. I. However,
it can be observed that both AEM-SBL and AEM-ADMM
have fewer run times than the centralized SBL and ADMM
as the number of clusters increases. These results demonstrate
the scalability of the proposed JADCE solutions.

VI. CONCLUSION AND FUTURE WORKS

This work presented a novel framework for cluster-based
device activity detection and channel estimation that relies
on orthogonal pilot subspaces to optimize GF-NOMA. By
utilizing non-i.d.d. pilot sequences, the proposed pilot-based
clustering approach promotes efficient device activity detection
and enhances network flexibility and scalability, making it
practically relevant. We leveraged concepts from the field of
inverse problems, and we proposed novel data-driven JADCE

Fig. 8: Performance as a function of the number of MTDs and
the cluster sizes.

solutions: i) AEM-ADMM, which uses iterative soft thresh-
olding for scenarios without exact priors, and ii) AEM-SBL,
designed for cases where prior distributions can be formulated.
The proposed algorithms outperform their classical counter-
parts in terms of run-time while maintaining similar perfor-
mance. Furthermore, the AEM introduces a fresh perspective
on device active detection in MTC by accounting for the
impairments of sensing matrices. Our proposal constitutes a
timely solution for receivers in a 5GB cellular network.

As a potential avenue for future research, the AEM approach
presented in this work can be further enhanced by introducing
adaptive correction parameters at each iteration, which may
improve its performance. Additionally, the flat fading channel
assumption can be relaxed to frequency selective fading to
address orthogonal frequency-division multiplexing (OFDM)-
inspired mMTC. Furthermore, the results of this work can
be extended to JADCE in cell-free MIMO communication
systems. In such systems, sets of APs can be optimally
coordinated to perform JADCE of MTDs to address extremely
uneven spatial activity cases. Therefore, the proposed algo-
rithms can be used to expedite JADCE for the coordinated set
of APs.
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[6] O. López et al., “Statistical Tools and Methodologies for URLLC–A
Tutorial,” arXiv preprint arXiv:2212.03292, 2022.

[7] H. Djelouat et al., “User Activity Detection and Channel Estimation of
Spatially Correlated Channels via AMP in Massive MTC,” in 2021 55th
Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021,
pp. 1200–1204.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3326468

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14

[8] L. Marata et al., “Joint channel estimation and device activity detec-
tion in heterogeneous networks,” in 29th European Signal Processing
Conference (EUSIPCO). IEEE, 2021, pp. 836–840.

[9] M. B. Shahab et al., “Grant-free non-orthogonal multiple access for IoT:
A survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3,
pp. 1805–1838, 2020.

[10] K. Senel and E. G. Larsson, “Grant-free massive MTC-enabled mas-
sive MIMO: A compressive sensing approach,” IEEE Transactions on
Communications, vol. 66, no. 12, pp. 6164–6175, 2018.

[11] T. Li et al., “Joint Device Detection, Channel Estimation, and Data
Decoding with Collision Resolution for MIMO Massive Unsourced
Random Access,” IEEE Journal on Selected Areas in Communications,
vol. 40, no. 5, pp. 1535–1555, 2022.

[12] A. Fengler et al., “Non-bayesian activity detection, large-scale fading
coefficient estimation, and unsourced random access with a massive
MIMO receiver,” IEEE Transactions on Information Theory, vol. 67,
no. 5, pp. 2925–2951, 2021.

[13] X. Shao et al., “Cooperative activity detection: Sourced and unsourced
massive random access paradigms,” IEEE Transactions on Signal Pro-
cessing, vol. 68, pp. 6578–6593, 2020.

[14] X. Chen et al., “Massive access for 5G and beyond,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 3, pp. 615–637, 2020.

[15] B. Li, J. Zheng, and Y. Gao, “Compressed sensing based multiuser
detection of grant-free NOMA with dynamic user activity,” IEEE
Communications Letters, vol. 26, no. 1, pp. 143–147, 2021.

[16] L. Liu et al., “Sparse signal processing for grant-free massive connec-
tivity: A future paradigm for random access protocols in the Internet of
Things,” IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 88–99,
2018.

[17] R. B. Di Renna et al., “Detection techniques for massive machine-type
communications: Challenges and solutions,” IEEE Access, vol. 8, pp.
180 928–180 954, 2020.

[18] Y. Zhu et al., “OFDM-based massive grant-free transmission over
frequency-selective fading channels,” IEEE Transactions on Communi-
cations, 2022.

[19] W. Jiang, Y. Jia, and Y. Cui, “Statistical device activity detection for
OFDM-based massive grant-free access,” IEEE Transactions on Wireless
Communications, 2022.
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