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Abstract
Purpose: Instrumented ultrasonic tracking provides needle localisation during ultrasound-guided minimally invasive per-
cutaneous procedures. Here, a post-processing framework based on a convolutional neural network (CNN) is proposed to
improve the spatial resolution of ultrasonic tracking images.
Methods: The custom ultrasonic tracking system comprised a needle with an integrated fibre-optic ultrasound (US) trans-
mitter and a clinical US probe for receiving those transmissions and for acquiring B-mode US images. For post-processing
of tracking images reconstructed from the received fibre-optic US transmissions, a recently-developed framework based on
ResNet architecture, trained with a purely synthetic dataset, was employed. A preliminary evaluation of this framework was
performed with data acquired from needle insertions in the heart of a fetal sheep in vivo. The axial and lateral spatial resolution
of the tracking images were used as performance metrics of the trained network.
Results: Application of the CNN yielded improvements in the spatial resolution of the tracking images. In three needle
insertions, in which the tip depth ranged from 23.9 to 38.4 mm, the lateral resolution improved from 2.11 to 1.58 mm, and
the axial resolution improved from 1.29 to 0.46 mm.
Conclusion: The results provide strong indications of the potential of CNNs to improve the spatial resolution of ultrasonic
tracking images and thereby to increase the accuracy of needle tip localisation. These improvements could have broad
applicability and impact across multiple clinical fields, which could lead to improvements in procedural efficiency and
reductions in risk of complications.
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Introduction

Ultrasound-guided needle insertions are widely performed
in many clinical contexts [1]. A key challenge in these pro-
cedures is to accurately identify the needle tip relative to
the ultrasound imaging plane. Instrumented ultrasonic track-
ing has recently been shown to be a promising solution. This
method involves ultrasonic communication between an ultra-
sound imaging probe and a needle [2–5]. Communication
can be effected in reception-mode, with a receiver integrated
into the needle, or in transmission-mode, with an inte-
grated ultrasound transmitter. These reception/transmission
modes include corresponding transmissions/receptions from
individual elements of the imaging probe, and image recon-
struction to obtain tracking images. The acquisition of
tracking images can be interleaved with B-mode ultrasound
images for real-time operation [6].
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With ultrasonic tracking, the resolution at which the nee-
dle tip can be resolved is of critical importance. Recently, a
framework based on a convolutional neural network (CNN)
was proposed to enhance the image quality of instru-
mented reception-mode ultrasonic tracking images that were
acquired with ultrasound reception from the needle tip [7].
Here, we use the principle of time-reversal to motivate
the use of this network for transmission-mode ultrasonic
tracking. Specifically, we hypothesise that this CNN-based
framework, which was trained purely on synthetic reception-
mode tracking data, can improve the spatial resolution of in
vivo transmission-mode tracking images. Additionally, we
investigate the impact on CNN performance by comparing
different parameters with which to generate ground truth
images for CNN training. This preliminary evaluation was
performed using data acquired from a preclinical fetal sheep
model.

Methods

The instrumented ultrasonic tracking system [6] comprised
two components: a needlewith an integratedfibre-optic ultra-
sound transmitter and a clinical ultrasound imaging system
(SonixMDP, Ultrasonix Medical Corporation, Richmond,
BC, Canada). The ultrasound transmitter was fabricated with
a custom polydimethylsiloxane-carbon nanotube composite
coating applied to the distal end of an optical fibre [8]. Ultra-
sound generation was achieved with pulsed light excitation
of this coating via the photoacoustic effect. The ultrasound
system was operated in research mode, which allowed for
interleaved acquisitions of B-mode ultrasound images (Fig.
1a) and tracking images, with the latter obtained from simul-
taneous reception from all 128 transducer elements of the
imaging probe (SonixDAQ,UltrasonixMedical Corporation,
Richmond, BC, Canada). The received A-line signals (Fig.
1b) were reconstructed offline (sound speed: 1500 m/s) with
a Fourier domain method implemented in k-wave [9] to form
the ultrasonic tracking image (Fig. 1c).

Post-processing of tracking images was performed using
a framework [7] based on a modified ResNet architecture
[10,11], which was trained using synthetic data. Generation
of these images involved simulating transmitted ultrasound
fields with a fast near field method (FOCUS) [12] and then
applying a Fourier domain method for image reconstruction
[9]. A representative output from the network is shown in Fig.
1d. With simulations, the tissue medium was assumed to be
homogeneous with an absence of attenuation and a uniform
sound speed of 1500m/s. The ultrasound probewasmodelled
as a set of 128 rectangular planar transducers, distributed

equidistantly across an aperture of 38.4 mm. The synthetic
training dataset comprised 1000 images that included a single
point source,whichwasvaried in position across the axial and
lateral dimensions of the imaging plane. Zero-mean Gaus-
sian noise was added to the channel data, which resulted in
SNR values that ranged from 10.5 to 56.1. After reconstruc-
tion, envelope detection via the Hilbert transform followed
by scaling was performed to restrict the solution space to the
range [0,1] for faster convergence during training. For each
tracking image, a ground truth image was generated with a
single point source corresponding to the ultrasound transmit-
ter location, convolved with a Gaussian kernel. Three kernels
with various sizes (σ = [

σZ , σX
] = [

1, 1
]
,
[
4, 2

]
,
[
8, 4

]

pixels, where Z and X are the axial and lateral dimensions,
respectively) were used to train three CNNs and their per-
formance was compared. The choice of anisotropic kernels
elongated in the axial dimension was made to compensate
for the difference in axial and lateral sampling rates in the
channel data.

The CNN framework comprised a modified residual neu-
ral network with 16 residual blocks [7]. Each block consisted
of 2 convolutional layers with 64 channels width and 3×3
convolutional kernels andbiases,with a rectified linear unit as
nonlinearity between the 2 convolutional layers. To achieve
faster convergence during training, patches of 64×64 pixels
were used in batches of 16, which were extracted randomly
from the training set. The CNN was implemented with Ten-
sorFlowv1.13 andKeras v2.2.4, on aworkstation comprising
an Nvidia 1080Ti GPU. Training was performed for 80
epochs with a synthetic validation set (generated in the same
way as the training set) by minimising the L1-loss between
the reconstructed and ground truth images (ADAM opti-
mizer; initial step size: 0.001).

To evaluate the performance of the trained network, three
needle insertions into the heart of a fetal sheep were per-
formed in vivo, as part of a broader set of preclinical
experiments. The procedure was conducted in accordance
with the U.K. Home Office regulations and the Guidance for
the Operation of Animals (Scientific Procedures) Act (1986).
Ethics approval was provided by the joint animal studies
committee of the Royal Veterinary College and University
College London (UCL), U.K.

Reconstructed tracking images were evaluated in terms of
the axial and lateral spatial resolution of the needle tip. For
resolution measurements, a 5× 5 mm bounding box centred
around the maximum amplitude of the needle tip was used;
the maximum intensity projections of the axial and lateral
profiles were obtained to calculate the corresponding full-
width-half-maximum (FWHM) values.
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Results & Discussion

Anexample of a needle insertion is shown inFig. 1.Across all
insertions, the needle tip ranged in depth from 23.9 to 38.4
mm. Signals from the ultrasound transmitter were clearly
apparent inA-lines fromapproximately half of the transducer
elements (Fig. 1c); it appeared that these signals originated
solely from the needle tip. Application of the trained CNN to
tracking images yielded average spatial resolution improve-
ments from 2.11 to 1.58 mm in the lateral dimension and
1.29 to 0.46 mm in the axial dimension, respectively. Addi-
tionally, background noise suppression was observed, which
was flattened to near constant values when the network is
applied.

Additionally, the impact of the dimensions of theGaussian
kernel used to obtain ground truth images was investigated
(Fig. 2). The use of a single pixel kernel (σ = [1, 1] pixels)
appears to be sub-optimal as it often led to multiple objects
in the tracking image. Conversely, using a larger kernel (σ =
[8, 4] pixels) tended to increase the size of the needle tip
object in the enhanced tracking image, thereby decreasing the
spatial resolution. Accordingly, an intermediate-sized kernel
with σ = [4, 2] pixels was chosen, which led to resolution
improvements in both the axial and lateral dimensions.

In ultrasonic tracking, obtaining large training sets for
training neural networks accurate estimation of ground truth
is often challenging [1]. Manual annotation is typically time-
intensive and can also introduce further uncertainty when
there is low visibility of the needle tip. In this context, the use
of synthetic data for training CNNs is attractive. The success
with a purely synthetic training dataset in this study stemmed

in part from the simplicity of the acquisition scheme com-
bined with a highly accurate numerical model for tracking
images. Notably, these images comprised only one point-like
object, namely the ultrasound transmitter. By comparison,
synthesising B-mode ultrasound images of tissue compris-
ing a multitude of objects, such as those encountered during
needle insertions, gives rise to many challenges owing to the
much greater dimensionality of this problem [13,14].

Several topics could be addressed in order to improve
upon the results presented here. First, further optimisation
of the dimensions of the kernels used to generate ground
truth images could be performed. This might lead to the
use of kernel dimensions that vary with the ground truth
needle tip position, perhaps mirroring spatial variations in
the point spread function of needle tips in reconstructed US
tracking images. Second, a Kalman filtering approach could
be used to improve needle tip position estimates by incor-
porating data from multiple ultrasonic tracking frames [15],
thereby acknowledging continuity of the needle path through
tissue. Third, variations in the sound speed and acoustic
attenuation of the imaged medium could be included to the
training dataset with a view to improve robustness for dif-
ferent tissue structures. These variations were present in the
in vivo dataset, which the framework handled well. Fourth,
explorations of the performance of the CNN with far fewer
simultaneously-received A-lines used to generate the track-
ing images would be of interest in terms of limiting system
complexity and cost. Finally, in order to remove the image
reconstruction step, end-to-end network approaches that use
A-lines acquired directly from the ultrasound imaging probe
as inputs [16,17] could be investigated in this context.

Fig. 1 Ultrasonic tracking with a needle inserted in the heart of a fetal
sheep in vivo. In this frame, the needle tip is located at a depth of 38.4
mm. With B-mode ultrasound (US) imaging (a), identification of the
needle tip (blue dot) was challenging. The transmission-mode imple-
mentation of ultrasonic tracking is shown schematically (b), with a
fibre-optic ultrasound transmitter integrated within a needle, and with
parallel reception of these transmissions by all elements of the clini-

cal US imaging probe. Reconstruction of the received channel data (c)
yielded the ultrasonic tracking image (d). Using the trained network,
the image quality of tracking images was enhanced (e); the axial res-
olution with which the needle tip could be visualised improved from
1.33 to 0.43 mm and the lateral resolution improved from 2.36 to 1.55
mm. MM: myometrium, R: rib, CW: chest wall, MC: myocardium, A:
atrium
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Fig. 2 Impact of the Gaussian kernel dimensions on the performance of
the trained CNN. The raw channel dataset shown in Fig. 1 was used here
as an exemplar. Three CNNs were trained separately with ground truth
images that were generated with a single point source convolved with
a kernel of various dimensions: σ = [

σZ , σX
] = [

1, 1
]
,
[
4, 2

]
,
[
8, 4

]

pixels, where Z and X are the axial and lateral dimensions, respectively.
Using a small Gaussian kernel (σ = [1, 1] pixels) can lead to the gen-

eration of multiple objects in the enhanced tracking image, as obtained
in this example. A kernel with σ = [4, 2] pixels yielded improved
performance, with fewer instances of multiple objects in the enhanced
tracking image (a single object was obtained in this example). Further
increasing the axial and lateral dimensions of the kernel (σ = [8, 4]
pixels) tended to decrease the resolution with which the needle tip was
visualised in the enhanced tracking image

Conclusion

This study demonstrated for the first time that a CNN-based
framework trained only on synthetic data can be used to
improve the spatial resolution of transmission-mode ultra-
sonic tracking images acquired in vivo. These results provide
strong indications of the potential to improve the spatial res-
olution in ultrasonic tracking and thereby to increase the
accuracy with which the needle tip is localised, with the aim
of improving the efficiency and safety of ultrasound-guided
needle insertions.
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