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Domain independent post-processing with graph
U-nets: Applications to Electrical Impedance

Tomographic Imaging
William Herzberg, Andreas Hauptmann Senior Member, IEEE, and Sarah J. Hamilton

Abstract— Objective: To extend the highly successful U-Net
Convolutional Neural Network architecture, which is limited to
rectangular pixel/voxel domains, to a graph-based equivalent that
works flexibly on irregular meshes; and demonstrate the effec-
tiveness on Electrical Impedance Tomography (EIT). Approach:
By interpreting the irregular mesh as a graph, we develop a
graph U-Net with new cluster pooling and unpooling layers that
mimic the classic neighborhood based max-pooling important for
imaging applications. Main Results: The proposed graph U-Net
is shown to be flexible and effective for improving early iterate
Total Variation (TV) reconstructions from EIT measurements,
using as little as the first iteration. The performance is evalu-
ated for simulated data, and on experimental data from three
measurement devices with different measurement geometries and
instrumentations. We successfully show that such networks can
be trained with a simple two-dimensional simulated training set,
and generalize to very different domains, including measurements
from a three-dimensional device and subsequent 3D reconstruc-
tions. Significance: As many inverse problems are solved on
irregular (e.g. finite element) meshes, the proposed graph U-
Net and pooling layers provide the added flexibility to process
directly on the computational mesh. Post-processing an early
iterate reconstruction greatly reduces the computational cost
which can become prohibitive in higher dimensions with dense
meshes. As the graph structure is independent of ‘dimension’,
the flexibility to extend networks trained on 2D domains to 3D
domains offers a possibility to further reduce computational cost
in training.

Index Terms—conductivity, electrical impedance tomography,
finite element method, graph convolutional networks, unet, post-
processing, deep learning

I. INTRODUCTION

NONLINEAR inverse problems are often described by
partial differential equations (PDEs) and measurements

are taken directly on the boundary of the domain, resulting
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in varying domain shapes [1]. Consequently, reconstruction
algorithms need to offer the flexibility to operate on these
varying domains. The finite element method (FEM), and in
particular the corresponding meshes, offers this flexibility with
respect to domain shapes and hence the tomographic image is
usually computed on a target specific mesh. A popular class
of reconstruction algorithms for this task are optimization-
based variational methods [2], where the reconstructions are
iteratively updated on the mesh by some optimization algo-
rithm, such as a Gauss-Newton type method. Unfortunately,
these methods tend to be expensive due to costly Jacobian
computations resulting in a tradeoff between cost and image
quality for increasing iterations. Additionally, reconstructions
can be sensitive to modeling of the domains or measurement
devices, potentially causing severe reconstruction artifacts [3].

One way to improve the image quality from an early iterate
is to perform a post-processing step to provide image quality
comparable to the full iterative algorithm, but with a substan-
tial reduction in computational cost. For this specific task Deep
Learning approaches have been immensely popular in recent
years [4]. Here, given the suboptimal reconstruction from an
early iterate one trains a neural network with representative
training data to produce an improved reconstruction. For this
specific purpose of post-processing, U-Net architectures [5],
[6] have been immensely successful. U-nets use a multi-
scale convolutional neural network (CNN) to process images
on multiple resolutions by extracting edge information as
well as long range features. The main limitation of CNN U-
nets lies in the strict geometric assumptions on the mesh,
i.e., the application of the convolutional filters requires a
regular rectangular mesh with ideally isotropic pixel dimen-
sions, preventing their direct application to the aforementioned
reconstruction problem on FE meshes. A simple remedy would
be to interpolate between the FE meshes and the rectangular
grid for application of the CNN, losing the flexibility that FEM
provides [7].

Alternatively, to retain the flexibility one can interpret the
FE mesh as a graph and process the image directly using
graph convolutional neural networks [8]. Here we propose
an extension of the CNN based U-Net architecture to a
graph U-Net. New graph-based pooling operations are required
to move between the multiple resolutions of a U-net such
that the local relations are preserved. To achieve this we
propose a cluster based pooling and unpooling that provides
comparable down and up-sampling to the classic max, or
average, pooling on CNNs. For computational feasibility, the
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clusters are pre-computed for each mesh and can be efficiently
applied during training and inference. The proposed graph U-
Net is then applied in the context of electrical impedance
tomography (EIT) a highly nonlinear inverse problem that
requires strong regularization to obtain good image quality.
In this work, we compute an initial reconstruction with only
a few iterations of total variation regularized Gauss-Newton
method and then train the network to improve image quality
providing excellent reconstruction quality with a considerable
reduction in processing time.

The primary advantage of a graph U-net lies in the flexibility
with respect to measurement domains. We note that, while
the initial reconstructions still require the careful modeling
of each device and domain, the networks can be trained
independently on general, simple, measurement setups. This
overcomes drawbacks, 1) the creation of general enough
training data is a time intensive task and 2) we cannot predict
all possible encountered domains in the measurement process,
e.g., varying chest shapes for physiological measurements of
human subjects [9]. Furthermore, the graph based nature of
the network is dimension independent as neighboring nodes
are described by a dimension independent adjacency matrix.
This allows one to train the network in 2D and apply it to
measurements from 3D domains.

This paper addresses the challenging task to process EIT
reconstructions from a diverse set of measurement devices
with a single network trained in a single 2D chest-shaped
measurement domain with elliptical inclusions. We can show
that the network successfully generalizes to measurement data
under varying domain shapes as well as to reconstructions
from three different EIT devices (KIT4, ACT3, and ACT5).
The data from the KIT4 device [10], [11] was taken on a chest-
shaped tank with 16 electrodes using bipolar current injection
whereas the ACT3 data was taken on a circular tank with
simultaneous injection/measurement across all 32 electrodes
[12], [13]. Both the KIT4 and ACT3 datasets corresponded to
2D cross-sectional imaging. However, the ACT5 datasets [14],
[15] used a fully 3D box geometry, with 32 large electrodes
and simultaneous current injection. We emphasize that all tests
are performed on either simulated or experimental tank data,
not human data and the clinical viability of these methods is
outside the scope of this current work.

This work is the first to show that a single network can
be successfully used in a variety of instrumentation and
measurement setups, combining the flexibility of FEM with
graph neural networks (GNN) and thus making deep learning
techniques more accessible to inverse problems and imaging
applications that heavily rely on the use of FE meshes. For
this purpose, we also provide a code package GN4IP1. It
should be noted that this paper reuses some content from thesis
[16], with permission. The target audience of this manuscript
is readers with some familiarity with neural networks and
deep learning. References [4], [17], [18] help provide such
background knowledge.

The remainder of the paper is organized as follows. Sec-

1Graph Networks for Inverse Problems (GN4IP) is available at github.com/
wherzberg/GN4IP

tion 2 develops the graph U-net and novel pooling layers, a
brief overview of EIT, the experimental data, training data,
and metrics to be used to assess reconstruction quality. Results
are given in Sec. II and discussion follows in Sec. IV where
modifications and extensions are explored, including the 3D
data with reconstructions from different algorithms than the
network was trained on. Conclusions are drawn in Sec. V.

II. METHOD

A. Learned Reconstruction

The main focus of this work is post-processing tasks,
however the modified graph U-net and new pooling layers
could easily be used in place of a residual network in a model-
based learning framework such as [8]. The problem at hand is
to improve a fast, reliable image that has predictable artifacts
that could be removed via post-processing. Post-processing
EIT reconstructions with the traditional U-net architecture
was shown highly effective for d-bar based reconstructions
[19], [20] and the dominant current scheme [21], but each of
those works applied the networks to rectangular pixel image
data, despite measurements obtained on different domains.
However, many image reconstruction methods are performed
on irregular meshes (e.g. FE meshes), which then require
the solution (reconstructed image) to be interpolated from
the computational mesh to the pixel grid. In some large
scale cases, this may be cost-prohibitive or less desirable
when solutions are needed at high precision. Thus, it is of
interest to have an alternative network structure for learned
reconstruction (e.g. post-processing and model-based learning)
on the computational mesh.

Graph Neural Networks have been around for years and
recently have garnered renewed interest for their scalability
and data flexibility. As with traditional CNNs, several options
for convolutional and pooling layers exist. However, at the
time of this work, the existing pooling layers, in particular
were inadequate for mirroring the maxpooling in classic CNN
U-nets. Therefore, we developed new layers here based on
spatially clustering neighboring nodes in the computational
mesh and then performing the maxpooling over the clusters.
The structure of the modified graph U-net used here is shown
in Figure 1.

1) A graph U-net with cluster pooling: As the name
suggests, graph networks act on graph input data. Historically,
graph convolutional networks have been applied to citation
networks, social networks, or knowledge graphs. However,
whenever you have a computational mesh, you inherently have
a graph representing the connections between the elements or
nodes in your computational mesh. In particular, for irregular
meshes commonly associated with FEM there are two natural
options for the associated graph: the mesh elements, or the
mesh nodes (Fig. 2). The adjacency matrix A is a sparse
matrix listing the edges (connections) between the graph
nodes. The basic form of the sparse adjacency matrix is
Aij = 1 if there is an edge connected nodes ni and nj . Self-
loops are recorded separately.

As opposed to convolutional layers which require regular n-
dimensional regular input data, graph convolutional layers are

github.com/wherzberg/GN4IP
github.com/wherzberg/GN4IP
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Fig. 1. A diagram of the proposed graph U-net with three pooling layers.
The input to the network is an initial reconstruction along with the adjacency
matrix A and cluster assignments (c1, c2, c3) for each of the pooling layers,
determined from the mesh. The output is defined on the same graph structure
as the input and can be taken, for example, as the final reconstruction.

(a) (b) (c) (d)

Fig. 2. A mesh with data defined over mesh nodes (a) and (b) the
corresponding graph. A mesh with data defined over mesh elements (c) and
(d) the corresponding graph.

designed to work on simple, homogeneous graph-type data.
While the list of graph convolutional layers is ever expanding,
we used the layer proposed by Kipf and Welling [22] designed
to be analogous to the CNN setting:

H(i+1) = D̃− 1
2 (A+ I) D̃− 1

2H(i)W (i), (1)

where the inputs to the layer are the graph’s feature matrix
H(i) ∈ RN×f(i) and adjacency matrix A ∈ RN×N , and
the output is a new feature matrix H(i+1) ∈ RN×f(i+1)

for the graph with the same structure [22]. Self loops, or
edges between a graph node and itself, are represented by
the identity matrix I , of the same size as A, and are added to
the adjacency matrix. Then, that sum is multiplied on the left
and right by D̃− 1

2 to account for the number of edges each
node has. The diagonal matrix D̃, which does not contain
trainable parameters and is only determined by A, is defined
by D̃ii = 1 +

∑
j Aij . Finally, multiplication of the scaled

adjacency matrix D̃− 1
2 (A+ I) D̃− 1

2 by the input feature ma-
trix H(i) aggregates information within local neighborhoods
and multiplication by the weight matrix W ∈ Rf(i)×f(i+1)

takes linear combinations of the aggregated features to form
the output features.

Bias parameters b ∈ Rf(i+1)

can be included in a graph
convolution by adding them to the output feature vector
of each node (each row of the output feature matrix). The
weight matrix W (and optional bias vector) are the trainable
parameters that are optimized during training. One significant
difference between convolutional layers and graph convolu-
tional layers is in how they aggregate information within
a pixel or node’s neighborhood. Convolutional layers learn
linear aggregation functions via the kernel parameters while
graph convolutions aggregate information according to a fixed

linear function, D̃− 1
2 (A+ I) D̃− 1

2 , determined by the graph’s
adjacency matrix A. The non-learned aggregation function
of such a graph convolution has raised questions of the
learning capacity of graph convolutional layers [23]. Despite
those concerns, graph convolutional layers have been used
successfully for a variety of graph and node classification tasks
[22], [24]. GCNs have also been used for model-based learning
directly on irregular mesh data [8]. In the down-sampling
path, graph convolutional layers are used like in the original
graph U-net [6] and in previous work on images represented
as graphs [8].

After graph convolutions, pooling layers are used to move
down and up the U-net. Several node-dropping, hierarchical
pooling layers (layers that gradually coarsen a graph by
removing nodes) for GNNs have been proposed including self-
attention graph pooling [25], adaptive structure aware pooling
[26], and gPool [6]. The gPool layer selects graph nodes to
preserve by first learning a projection of nodes’ feature vectors.
For each node, its feature vector is projected by a vector
p ∈ R(i) to return a scalar score. Then, the nodes with the top
projection scores are preserved. The adjacency matrix is also
sliced to preserve only the rows and columns for the preserved
nodes. The parameters in the projection vector p are optimized
during training.

One significant difference between the gPool layer and
the max-pooling layer used in CNNs is that the gPool layer
performs global node selection while the max-pooling layer
performs local selection. That is, the max-pooling layer only
considers features within a subregion or window of the input
when preserving pixel data, while the gPool layer considers
the projection scores from the entire graph when deciding
which nodes to preserve. Self-attention graph pooling, adaptive
structure aware pooling, and other node-dropping, hierarchical
pooling layers also consider the whole graph when selecting
which nodes to preserve, which gives way to the possibility
that entire regions of a graph could be discarded when pooling
[27]; something that is not possible with CNN-based max-
pooling. Therefore a new graph pooling layer, the k-means
cluster (kMC) max pool layer, was developed with local
pooling in mind.

To create local windows in the input graph, the k-means++
algorithm2 [28] was used to cluster the graph nodes. The inputs
to the k-means++ algorithm include the locations of the N
graph nodes and the number of clusters Nc desired. The output
of the algorithm was the cluster assignments c ∈ {1, ..., Nc}N
and the locations of the clusters. Locations of the input nodes
are determined from the FE mesh that the input graph was
representing. That is, for data on the mesh nodes, the locations
of those nodes are used, and, for data on the elements, the
element centroid locations can be used. The locations of the
output clusters are taken as the centroid of the graph nodes in
the cluster. As the k-means++ algorithm is stochastic, it was
repeated multiple times, and the cluster assignments with the
minimum within-cluster spacing selected.

With clusters defined, max-pooling is performed within each
cluster along each feature of the input graph. Therefore, the

2The MATLAB R2021b implementation kmeans() was used.
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output of the pooling operation is a set of Nc nodes at the
cluster locations and with the maximal features from the input
nodes within each cluster. The adjacency matrix of the output
graph is determined by the cluster assignments as well. If any
edge connected two input nodes assigned to separate clusters,
an edge was drawn between the output nodes representing
those clusters. Figure 3 (top) depicts the structure of the input
and output graphs of the kMC max pooling operation.
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Fig. 3. Top: A diagram of a graph (top) and its feature matrix (bottom) being
pooled using the novel k-means cluster max pool layer. The k-means++
algorithm is used to cluster the input nodes (left) according to their spatial
location. For each cluster (middle left), an output node is placed at the centroid
of the cluster (middle right), and the node’s features are determined using the
maximum within the cluster. The edges of the output graph (right) connect
previously connected clusters. Bottom: A diagram of a graph (top) and its
feature matrix (bottom) being unpooled by a clone cluster unpool layer
after a previous cluster-based pooling layer. The previous structure of the
graph (node locations and edges) are restored (middle left) and the features
of the input nodes are cloned/copied to the output nodes within each cluster
(middle right).

In encoder-decoder type GNNs that have a down-sampling
path of node-dropping, hierarchical pooling layers and a
symmetrical up-sampling path, the up-sampling often uses
the gUnpooling layer [6], [27]. Nodes and edges that were
removed in the associated pooling layer are restored in the
gUnpooling layer. The features of the restored nodes are set
to zero. There are no trainable parameters in the gUnpool
layer. The gUnpool layers could not be used here as pairing it
with the k-means cluster max pool layer, would result in the
output graph having all nodes’ features set to zero because all
output nodes are restored. Like the gUnpool layer, a new clone
cluster unpool layer, shown in Figure 3 (bottom) was designed
to restore the pre-pooled graph structure. Instead of returning
the previously removed nodes with features set to 0, the nodes
are restored with feature vectors equal to the node representing
the cluster to which the nodes belong. That is, each output
node is restored as a clone/copy of the input node representing
the cluster including the output node. The proposed layer was
developed to act like a nearest-neighbor up-sampling layer, or
a transpose convolutional layer with equal stride and kernel
size and parameters fixed to 1.

For each graph, the adjacency matrix and downsampled
clustering assignments can be computed offline prior to the
training or processing through the network. The resulting
graph U-net Λθ takes as inputs (xin,A, c) where c =

(
c1, ..., cNp

)
are the cluster assignments for the Np pooling

(and unpooling) layers in the network. The post-processed
image x̂ is then the output of

x̂ = Λθ (xin,A, c) . (2)

Note that each cluster assignment vector, cj , is of a different
length, and c represents the list of vectors. Figure 1 provides
a diagram of the proposed graph U-net with Np = 3 pooling
layers. The k-means cluster max pooling and clone cluster
unpooling layers used in this graph U-net allow the cluster
assignments to be mesh specific and computed prior to training
or predicting. In the experiments conducted, no problems were
noticed by training or prediction samples having different
meshes and cluster assignments. Computing cluster assign-
ments can take several minutes depending on the number of
input nodes, clusters, and repetitions, thus computing them
ahead of time keeps both training and prediction fast. In
addition, the number of clusters used at each pooling layer
can be tuned similarly to how the kernel size of a CNN max
pooling layer can be adjusted. Overall, the new proposed graph
pooling layer was a fast and flexible alternative to the existing
graph pooling layers, and it behaves more like the traditional
max pooling layer used in convolutional U-nets. The proposed
clone cluster unpooling layer works naturally with the cluster-
based pooling in the graph U-net architecture. Alternatively,
regional downsampling of the graph and adjacency matrix
could be performed via mesh coarsening as in [29].

2) Training: Training data consists of
{
xirecon, x

i
true

}
pairs

where xirecon is produced via the user’s chosen solution method
on measurement data yi. The computational mesh associated
to xirecon leads to an adjacency matrix Ai and corresponding
cluster assignments ci. Then, the network is trained using
xirecon, Ai, and ci as inputs and xitrue as the desired outputs. A
loss function involving the network outputs x̂i and the known
true images xitrue can be used. Either MSE or an ℓ1 loss
function are natural choices. One could also weight the loss
function differently for each sample or for each graph node.
Once the training of the network is complete, the parameters
θ̂ are saved for use in the online prediction stage.

Note that training data could have all different computa-
tional meshes, all the same, or any mix thereof. In this work,
a single reconstruction mesh was used per network trained
to demonstrate a simple case. Note that this does not restrict
later passing reconstructions on different meshes through the
trained network (i.e. a network trained on reconstructions from
meshj , adjacency matrix Aj , with clusters cj is not restricted
only to meshj as the adjacency matrix and clusters are inputs
to the network). Several test cases are presented in Section III
demonstrating the flexibility of the networks to input data
coming from different domain shapes, experimental setups,
and even higher dimensional data (3D when trained on 2D).

In the online prediction stage, an updated reconstruction
x̂ is estimated from measurement data y by first computing
an initial reconstruction xrecon from y and passing xrecon, its
adjacency matrix A, and corresponding cluster assignments
c through the trained network using (2) where the trained
parameters θ̂, which were saved during the offline stage, are
used in the network.
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B. Case Study: Electrical Impedance Tomography

EIT is an imaging modality that uses electrodes attached to
the surface of a domain to inject harmless current and measure
the resulting electrical potential. From the known current
patterns and resulting measured potential, the conductivity
distribution of the interior of the domain can be estimated
[30]. The mathematical problem of recovering the conductivity
is a severely ill-posed inverse problem as large changes in the
internal conductivity can present as only small changes in the
boundary measurements [31], [32].

The recovered conductivity distribution can be visualized
as an image and/or useful metrics extracted. Applications
of EIT are wide-ranging from nondestructive evaluation to
several medical imaging applications (see [33], [34] for a more
comprehensive list). Here we focus on absolute, also called
static, EIT imaging which uses recovers the static conductivity
at the time the data was collected from a single frame of
experimental data. Absolute/static imaging is important in
applications such as nondestructive evaluation, breast cancer,
or stroke classification where a pre-injury/illness dataset is
unavailable. Alternatively, time-difference EIT imaging recov-
ers the change in conductivity between two frames of data.
Such time-difference data is useful in monitoring settings such
are thoracic imaging of heart and lung function or stroke
monitoring. Commercial EIT systems for monitoring heart and
lung function are available and used in Europe and South
America. Alternatively, frequency sweep data can be used in
absolute imaging scenarios or difference imaging scenarios to
further identify tissue based on the electrical properties and
how they change with the frequency of the applied current.

The conductivity equation [30]

∇ · σ(x)∇u(x) = 0 x ∈ Ω ⊂ Rn, n = 2, 3, (3)

models the relationship between the electric potential u(x) and
conductivity σ(x) in a domain σ ⊂ Rn with Lipschitz bound-
ary. In the forward problem of EIT, the voltage measurements
at the electrodes are simulated for a known current pattern T
and bounded conductivity distribution 0 < c ≤ σ(x) ≤ C <
∞ for some constants c and C. Boundary conditions are given
by the Complete Electrode Model (CEM) [35] which takes into
account both the shunting effect and contact impedance when
modeling the electrodes. The CEM is given by∫

eℓ
σ ∂u

∂ν dS = Tℓ, ℓ = 1, 2, ..., L,

(u+ zℓσ
∂u
∂ν )

∣∣
eℓ

= Uℓ, ℓ = 1, 2, ..., L,

σ ∂u
∂ν

∣∣
∂Ω/∪eℓ

= 0, ℓ = 1, 2, ..., L,

(4)

where L denotes the number of electrodes, eℓ the ℓth electrode;
zℓ, Tℓ, and Uℓ, are the contact impedance, current injected, and
electric potential on the ℓth electrode, respectively; and ν is
the outward unit vector normal to the boundary. Furthermore,

ensuring
L∑

ℓ=1

Tℓ = 0 and
L∑

ℓ=1

Uℓ = 0 enforces conservation of

charge and guarantees existence and uniqueness [35]–[37].
The inverse problem, determining the interior conductivity

distribution σ ∈ Ω that led to the measured voltages for the
known applied current patterns, was solved using the well-

established Total Variation (TV) method. The total variation
of a discrete conductivity distribution

TV (σ) =
∑

|Lσ| , (5)

is often computed using the sparse difference matrix L which
approximates the gradient of the conductivity distribution. It
has one row Li ∈ RNM for each edge segment separating
two elements in the mesh with NM elements. Each row of L
has two nonzero elements; di and −di are the entries in the
columns ni and mi for the ith edge segment with length di that
separates mesh elements ni and mi. TV regularized methods
often use a smoothed approximation of (5) to simplify the
minimization task of the absolute value term by making it
differentiable. In this work TV regularization is implemented
by solving an optimization problem to obtain the iterate

σk+1 = σk + αk (δσk) , (6)

where αk is a step length, computed via a line search, that
minimizes the objective function F (σk+1) where

F (σ) =
1

2
∥U(σ)− V ∥22 + λ

∑
i

√
(Liσ)

2
+ γ, (7)

and the update

δσk = −
(
JT
k Jk + λBk

)−1 (
JT
k (Uk − V ) + λBkσk

)
, (8)

where the subscript T denotes the nonconjugate transpose,
Jk = J(σk) is the Jacobian for iterate σk, Uk = U(σk),
and Bk = LTE−1

k L where Ek = diag(ηi) with ηi =√
(Liσk)

2
+ γ. The TV method was used here as it is a

commonly used reconstruction method for EIT that recovers
sharp target boundaries. See [36]–[38] for further details on
derivation and implementation of the TV method for the EIT
problem.

C. Metrics for Success & Experimental Setups

Improvement in image/reconstruction quality will be as-
sessed by several metrics and furthermore compared to results
from a classic CNN architecture. The training data as well
as various test sets (simulated and experimental) are also
described here.

1) CNN Comparison Method: An alternative to the graph
U-net presented in this work was to interpolate image data
defined on a FE mesh to a pixel grid so that a typical convo-
lutional U-net can be used. Thus, the reconstruction xin was
computed, as before, on a FE mesh from measurement data y,
then interpolated to a pixel grid x̃in = f (xin). Next, a post-
processing CNN ΛCNN

θ is used to estimate the reconstruction
on the pixel grid: x̃ = Λθ (x̃in). If desired, the network output
can then be interpolated back to the FE computational mesh:
x̂ = f† (x̃) .

In this setting, the CNN networks are trained using a set of
initial reconstruction and truth image pairs, where both have
been interpolated from the computational mesh to the pixel
grid. It may be desirable to utilize a CNN to post-process
images, as opposed to a GNN, as there is precedent for using
CNNs on image data. Still, the loss of fine detail in refined
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portions of the mesh and the errors induced by interpolating
to and from a pixel grid could be prohibitive or time intensive
in certain imaging applications.

KIT4 S.1 KIT4 S.2 KIT4 S.3 ACT3 S.1

Fig. 4. Photographs of the KIT4 and ACT3 experimental data [13], [20].

2) Experimental Data: Six experimental tank datasets with
conductive agar targets, taken on three different EIT machines
will be used to evaluate the graph U-net method presented
in Section II-A1. The first set, denoted KIT43, comes from
the 16 electrode KIT4 system at the University of Eastern
Finland [10], [11]. Conductive agar targets (pink 0.323 S/m,
white 0.061 S/m) were placed in a saline bath, with measured
conductivity 0.135 S/m, in a chest shaped tank with perimeter
1.02 m and 16 evenly spaced electrodes of width 20 mm. The
computational reconstruction mesh used for the KIT4 datasets
contained 3,984 elements. Three experiments were performed
to mimic heart (pink) and lung (white) imaging (Fig. 4-
left). Sample KIT4-S.1 shows a ‘healthy’ setup with two low
conductivity targets (lungs) and one high conductivity target
(heart). Sample KIT4-S.2 has a cut in the “lung” target on
the viewer’s left while KIT4-S3 replaces the missing portion
with a more conductive agar (e.g. possibly a pleural effusion).
For each setup, 16 adjacent current patterns were applied with
an amplitude of 3 mA and current frequency of 10 kHz, and
measurements were recorded on all electrodes. The regular-
ization parameters for TV were selected as λ = 5 · 10−5 and
γ = 10−14 based on testing from simulated datasets.

Next, archival data from the 32 electrode ACT3 system [12],
[13] was used. In Sample ACT3-S.1 ((Fig. 4-right), a circular
heart target (0.750 S/m) and two lung targets (0.240 S/m)
were placed in a saline bath (0.424 S/m) in a tank of
radius 0.15m. Trigonometric current patterns with maximum
amplitude 0.2mA and frequency 28.8kHz were applied on the
32 equally spaced electrodes of width 25mm.

Lastly, data from the ACT5 system [14], was used for
extension testing to 3D data. Samples ACT5-S.1 and ACT5-
S.2 (Fig 5) were collected on plexiglas box with interior
dimensions 17.0cm x 25.5cm x 17.0cm with 32 electrodes
of size 8cm x 8cm [15]. The top of the tank is removable
and has small holes allowing for filling and resealing between
experiments. Spherical agar targets of measured conductivity
0.290 S/m were placed in tap water measuring 0.024 S/m.
Optimal current patterns for the saline only tank were obtained
and used for ACT5-S.1 and S.2.4

3) Training Data: Simulated data using the chest-shaped
domain corresponding the the KIT4 data, with 16 electrodes
and adjacent current pattern injection, was used to generate
the training data. The measurement mesh contained 10,274

3The experimental KIT4 data is freely available at https://github.com/
sarahjhamilton/open2Deit agar.

4The experimental ACT5 data is freely available at https://github.com/
sarahjhamilton/open3D EIT data.

ACT5 S.1 ACT5 S.2 SIDE VIEW

Fig. 5. ACT5 experimental setups and side view showing target height.

elements, and the reconstruction mesh was the same as the
one used for the experimental KIT4 datasets (3,984 elements).
The simulated true conductivity distributions had an equal
chance of either three or four randomly placed elliptical targets
that were not allowed to overlap or touch the boundary.
For each ellipse, the major axis was between [0.03-0.07]
meters and the minor axis was [50 - 90]% of the value of
the major axis. Each target had an equal chance of having
a constant conductivity in the range of [0.04, 0.07] S/m or
[0.25, 0.35] S/m, while the background conductivity values
were constant in the range of [0.11, 0.17] S/m. The measured
voltage data was simulated using all 16 possible adjacent
current patterns with an amplitude of 3 mA and 0.5% relative
noise added to the voltages prior to reconstruction with TV.
This corresponds to the simulated data having an SNR of about
51 dB, well below the SNR of the experimental data (KIT4
65.52 dB [39], and ACT3/ACT5 96 dB).

Eight separate U-nets were trained, four based on GNNs and
four on CNNs. The four graph U-nets are named GNN-TVx
and the four convolutional U-nets are named CNN-TVx where
the “x” represents the TV method iterate used as input to the
network. That is GNN-TV2 and CNN-TV2 are a graph U-net
and classic U-net, respectively, that use the second iteration
σ2 of the TV method as input. The networks were trained
using 5,000 training samples and 500 validation samples.
The number of training samples used was greater than the
number used for the model-based methods in [8] since the
networks have many more trainable parameters. The number
of samples was in line with other implementations of the U-net
architecture for EIT [11] and did not result in severe or harmful
over-fitting of the networks trained here. More testing could
be done to determine if even fewer samples could be used for
training. The ADAM optimizer [40] with an initial learning
rate of 5 · 10−4 and mini batches of 32 samples were used to
optimize the parameters. Other learning rates and batch sizes
were also tested and resulted in similar minimum loss values
and training times. Training of each network was stopped if
the validation loss, MSE, failed to decrease over the course
of 50 epochs and the parameters (weights and biases) that
resulted in the lowest validation loss were saved.

The loss plots for the GNNs and CNNs using different
iterates as input are shown in Figure 6. As expected, the
U-nets using later iterates as input achieved lower minimum
validation losses than the networks using TV1 inputs. There
was a greater difference in the minimum validation loss values
between graph U-nets with different inputs compared to classic
U-nets with different inputs. Still, for both types, there was not
a large difference between the U-nets using the third and fourth
iterates as inputs. The CNNs reached lower raw minimum
validation loss values but they cannot be compared directly to

https://github.com/sarahjhamilton/open2Deit_agar
https://github.com/sarahjhamilton/open2Deit_agar
https://github.com/sarahjhamilton/open3D_EIT_data
https://github.com/sarahjhamilton/open3D_EIT_data
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Fig. 6. Loss plots (training and validation) for the GNN-TVx and CNN-
TVx networks that were trained with the Chest-16 dataset. The losses were
computed as the mean squared error between the networks’ outputs and the
true conductivity distributions computed over the mesh for the GNNs (top)
and over the pixel grid for the CNNs (bottom).

the graph U-nets because the loss was computed over different
domains and discretizations.

The shapes of the loss curves are different between the
types of U-nets but consistent across input iteration. The graph
U-nets required 130-280 epochs to reach a minimum valida-
tion loss while the convolutional U-nets required only 20-30
epochs. After reaching the minimum validation loss, the graph
U-nets validation loss values leveled out in later epochs, while
the CNN validation loss values slightly increased. For both
network types, the training loss values continued to decrease.
All of these characteristics were consistent across repetitions
of training independent networks, and more research is needed
to determine why the differences exist or what the effects are
in the final reconstructions. In addition, determining if the
network weights resulting in the lowest validation loss produce
the “best” reconstructions is also the topic of future research
as metrics other than MSE are also critical in assessing EIT
reconstruction quality.

4) Metrics: As there is no universally accepted metric for
assessing the quality of EIT reconstructions, the metrics listed
below, along with visual inspection, will be used collectively
to assess reconstruction quality:

Dynamic Range: DR = max(σ̂)−min(σ̂)
max(σtrue)−min(σtrue)

× 100%.

Total Variation Ratio: TVR =
∑

|Lσ̂|∑
|Lσtrue| × 100%.

Relative l2 Voltage Error: REl2
V =

∥U(σ̂)−V ∥2

∥V ∥2

where 100% is a perfect score for DR and TVR while 0 is
ideal for relative voltage error.

Note that these metrics above do not account for the varying
sizes of the mesh elements. If desired, the metrics can be
scaled relative to element size as well and the networks
even trained based on such weighted metrics. Further work
is needed to determine if the weighted or unweighted metrics
and/or using weighted loss functions during training are more
correlated with visually high quality reconstructions. Such
work, while interesting is left for future studies. Here, only
unweighted metrics were used and reported. Additionally,
region of interest (ROI) metrics may be of higher interest than
global image metrics. Where appropriate, e.g. lung imaging,
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Fig. 7. Demonstration of the GNN-TVx and CNN-TVx networks on
simulated data consistent with training data as well as average metric scores
for reconstructions of such 50 test samples compared to the TV method. All
conductivity reconstructions are on the same color scale.

ROI metrics are also presented and represent the mean recon-
structed conductivity value in the indicated region.

III. RESULTS

We first explore results for data consistent with the training
data described in Sec. II-C3. Figure 7 compares the results
for a simulated dataset consistent with the network data. The
top row displays the truth as well as the non-learned TV
reconstruction after 20 iterations. The second row displays
the input images for the networks which vary from iteration
1 to 4 of TV. The third and fourth rows show the post-
processed reconstructions from the GNN and CNN networks.
Note that the inputs (row 2) are interpolated to a pixel grid,
processed by the CNN networks, then interpolated back to
the computational mesh on which they are displayed in row
four. As expected the CNNs display excellent sharpening even
from a first TV iteration input image. The GNNs outputs are
similarly sharpened with early iterate TV inputs but the targets
are better separated when using at least the second TV iterate.
Metrics averaged over 50 simulated test samples consistent
with the training data are also shown in Fig 7. We see that
overall the learned methods outperform the classic TV in all
metrics aside from the relative voltage error fit, which is not
unexpected as TV optimizes specifically for this whereas the
network solutions do not. The GNN and CNN based U-nets
perform similarly across the remaining metrics with the GNNs
slightly outperforming the CNNs for the DR and TVR. Note,
also that the first iteration of TV performed significantly worse
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TABLE I
MEAN CONDUCTIVITY ROI METRICS (S/M) FOR KIT4 AND ACT3

RECONSTRUCTIONS.

Truth TV GNN- CNN-
TV1 TV2 TV3 TV4 TV1 TV2 TV3 TV4

K
IT

4-
S.

1 Heart 0.323 0.324 0.309 0.319 0.326 0.321 0.325 0.326 0.336 0.332
R. Lung 0.061 0.105 0.100 0.116 0.118 0.118 0.106 0.113 0.104 0.106
L. Lung 0.061 0.099 0.101 0.109 0.110 0.111 0.098 0.104 0.106 0.099

K
IT

4-
S.

2 Heart 0.323 0.318 0.291 0.317 0.324 0.322 0.326 0.324 0.334 0.327
R. Lung 0.061 0.105 0.098 0.112 0.116 0.120 0.106 0.114 0.105 0.108
L. Lung 0.061 0.101 0.122 0.105 0.107 0.103 0.109 0.105 0.109 0.101

K
IT

4-
S.

3 Heart 0.323 0.299 0.271 0.309 0.320 0.318 0.320 0.323 0.327 0.320
R. Lung 0.061 0.099 0.097 0.105 0.103 0.106 0.106 0.106 0.100 0.105
L. Lung 0.061 0.118 0.176 0.136 0.125 0.144 0.141 0.128 0.123 0.120
Injury 0.323 0.350 0.302 0.295 0.320 0.316 0.337 0.328 0.344 0.357

A
C

T
3-

S.
1 Heart 0.750 0.748 0.434 0.780 0.788 0.851 0.426 0.656 0.765 0.808

R. Lung 0240 0.216 0.277 0.200 0.225 0.217 0.292 0.231 0.204 0.207
L. Lung 0.240 0.202 0.271 0.205 0.223 0.215 0.280 0.230 0.196 0.200

than later TV iterates for the GNNs indicating a second iterate
starting point may be advisable.

Reconstructions from the experimental KIT4 S.1-S-3
datasets are shown in Fig. 8, with corresponding mean con-
ductivity ROI metrics in Table I. As with the simulated data,
we see remarkable sharpening even with a single iterate of
TV used as input for both the CNN and GNN. Recall that the
training data for the networks was simple ellipses and thus
the target shapes even in KIT4-S.1 are slightly different than
that and the networks have not seen ‘cut’ data as in KIT4-
S.2 and S.3. The post-processed images from the CNNs have
slightly deformed ‘lungs’ when compared to the GNN output.
Small conductive artifacts appear many of the GNN and CNN
reconstructions at the bottom center. None of the methods,
learned or TV, were able to recover the sharp cut in both the
top and bottom portion of the viewer’s left lung in Sample

KIT4-S.3. The bottom portion of the lung did have a sharper
dividing line for the GNNs as well as CNN-TV4. Moving to
the metrics, we see that TV slightly outperforms the networks,
as expected. However, in the DR and TVR we again see the
GNNs better approximate the true dynamic range and total
variation ratio, in particular for the earlier TV iterates. For the
mean conductivity ROI metrics in Table I, overall, the GNNs
slightly outperform both the full TV and CNNs. In each case
the full TV reconstruction produced the visually most similar
reconstruction to the truth, but needed approximately 20
iterations, compared to 1-4 iterations with the post-processed
setting. Depending on the application, in particular for 3D, it
may be important to balance the reconstruction quality versus
computational cost.

Next, further out-of-distribution data is tested by using the
ACT3-S.1 dataset which comes from a circular domain, 32
electrodes, applied trigonometric current patterns, and has tar-
gets with different conductivity values than in the training data.
In order to process the ACT3-S.1 sample through the trained
networks, the input images were scaled to have the background
value in the expected window, processed, then scaled back.
Figure 9 shows the resulting conductivity reconstructions and
Table I the corresponding ROI metrics. Here, both the CNN
and GNN networks required at least TV2 input to resolve the
targets, though the GNN-TV1 image is more recognizable than
the CNN-TV1, albeit the contrast is worse. The CNN-TV2 did
the best at separating the lungs but underestimated the size of
the heart. The ROI metrics show that the mean target ROIs
are quite close overall to the truth.

To this end, in Fig. 10, we study how well the networks
handle incorrect domain modeling, a notoriously challenging
problem in absolute/static EIT imaging [41]. Here, the true
domain is the chest-shaped domain but we naively reconstruct
on the elliptical domain shown. Again, we see that TV1 is not
informative enough for GNN-TV1 to recover all four targets.
Notably, the boundary artifacts common from the domain
mismodeling are significantly reduced in the post-processed
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Fig. 10. Robustness to domain modeling errors. Results of the GNN-
TVx and CNN-TVx networks on simulated data, assuming the true domain
was an ellipse instead of chest-shape as well as average metric scores for
reconstructions of such 50 test samples compared to the TV methods.

images for both the GNN and CNN networks.

IV. DISCUSSION

To further test test the robustness of the graph U-net we
explored how well the networks trained on 2D EIT data
worked when the input data came from 3D measurement data
that was significantly different than the networks were trained
on. Additional modifications to the network structure (layers
and inputs) are discussed. Lastly, a free python package GN4IP
developed for this project is presented.

A. Testing 3D data in 2D networks

The data is defined over a graph, not a pixel grid, as such the
convolutions and pooling in the graph U-net are not dependent
on the 2D geometry on which the data was trained. This
flexibility allows us to input data from different dimensions.
We take the networks trained on the 2D EIT data in a
chest-shaped 16 electrode tank with adjacent current pattern
injection, and moderate conductivity contrasts and test how
well they generalize to 3D EIT reconstructions from the exper-
imental ACT5 tank data with 32 large electrodes, with different
current patterns, and high contrast targets (0.290/0.024 ≈12x
contrast). Here, the inputs to the network are coming from the
first iteration of a Levenberg-Marquardt (LM) algorithm, with
update term

δσ(LM)

k = −
(
JT
k Jk + λLMI

)−1
JT
k (Uk − V ) , (9)

using λLM = 1e− 6. The computational mesh for the 3D box
tank shown in Fig. 5 had 85,699 elements and 18,569 nodes.
Solutions were computed on the elements, using linear basis
functions, and thus the associated graph had 85,699 nodes.
Next, the LM iteration 1 reconstructions were scaled by 1/5
to bring the background conductivity value into the window
expected by the network. The 3D reconstructions were then
processed through GNN-TV1 and scaled back by 5 yielding
the images in Fig. 11 (rows 1-2) resulting in significantly
sharper images. The 3D reconstructions are visualized here
by stacking transparent slices in the xy-plane to render a
transparent 3D image. The images do not achieve the contrast
of the true targets, but as the network was not expecting data at
12x contrast, this is not unexpected and in fact is in line with
the regularized TV results in Fig. 3 of [15]. Computational
cost of the single iterate was under 10 minutes, not optimized
and the post-processing negligible.

Next, we further test the limits by post-processing recon-
structions from a direct Complex Geometrical Optics (CGO)
based method, the texp approximation [15], [42], based on the
full nonlinear direct solution method [43]. The method is fast
(a few seconds) and is based on scattering transforms for the
associated Schrödinger problem, essentially nonlinear Fourier
transforms tailor made for the EIT problem. For simplicity,
the texp conductivity reconstructions in Fig. 3 of [15], which
can be computed on any type of mesh, were interpolated to
the same 85,699 element FEM mesh, scaled again by 1/5,
and then used as input to the network GNN-TV1. As the texp

reconstructions were able to achieve the correct experimental
12x contrast before post-processing, the contrast of the targets
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Fig. 11. Post-processed reconstructions from experimental ACT5 data from
LM iteration 1 and texp are shown in rows 1-3. Row 4 shows the result of
post-processing a CGO reconstruction in line with the contrast expected by
the U1 network using simulated, noisy voltage data.

input to the network were very far out (6x higher) from what
was expected. As such, the network struggled with what to
do with this contrast as can be seen in Fig. 11 (row 3).
However, row 4 suggests that the contrast really was the
problem, as texp reconstructions from simulated noisy voltage
data corresponding to the contrast expected by the network is
post-processed extremely well. Note how different the artifacts
are in the input texp images when compared to the 2D TV input
images. Nevertheless, the graph U-net is able to sharpen this
image remarkably well and adjust the contrast.

This underlines the flexibility of the graph structure, where
training a graph U-net on 2D data and using on 3D data may
be particularly advantageous for computationally demanding
problems with dense 3D meshes. Testing the limits of this
approach is the subject of ongoing work.

B. Modifying the Network Architecture

The growing number of applications utilizing graph data has
motivated the increased interest in GNNs over the past several
years [44]. Consequently, a variety of network architectures
have been proposed that leverage different geometric aspects
of the available graph data. While the presented study here
considers the suitability of the graph U-net for the post-
processing task, we also note, that a possible shortcoming of
the graph convolutional layer [22] is a reduced fitting capacity
compared to a standard convolutional layer. Specifically, the
graph convolutional layer aggregates information according to
a function of the adjacency matrix in contrast to a learned
linear combination of neighboring pixels in the standard
convolution. While we presented a convolutional U-Net archi-

tecture here, other architectures and layers can be considered.
For instance, further improvements to the presented application
here could be achieved by using more expressive layers, such
as graph attention networks [45] and variants [46], or layers
exploiting specific geometric relations [29].

C. Further Applications

Aside from the post-processing tasks in the EIT recon-
struction problem, other imaging (or non-imaging) inverse
problems that utilize irregular and sample-specific domains
may benefit from using GNNs. One example is in omnidi-
rectional or 360◦ imaging tasks where placing the image on a
rectangular pixel grid causes distortion [47]. The use of GNNs
instead of CNNs would remove the need for projections and
allow the images to remain in their natural spherical domains.
In particular, if only the improved solution at the boundary
of an N -dimensional object is desired, the solution could be
post-processed on a graph consisting only of boundary mesh
elements removing the need to project to lower dimensional
pixel grids and using determine wrapping conditions in the
projected domain. Additionally, ResNets in model-based learn-
ing (e.g. [8]) may be replaced by graph U-nets counterparts,
offering larger receptive fields which may be needed to negate
nonlocal artifacts in the image or data domain [48], [49].

D. Python Package GN4IP

A Python package, Graph Networks for Inverse Problems
(GN4IP), was developed to more easily implement learned
model-based [8] and post-processing reconstruction methods
[16]. In general, it contains methods for loading datasets
from .mat files; building a GNN and CNN with simple
sequential or U-net architectures; training and saving model
parameters; and predicting; among other things. The package
utilizes the PyTorch and PyTorch Geometric libraries for their
neural network capabilities. Also, the package is capable of
calling on EIDORS5, a set of open source algorithms for EIT
implemented in MATLAB, to solve the EIT forward problem
and compute LM and TV updates needed for the model-based
methods. The GN4IP package is currently available on github6.

V. CONCLUSION

A new graph U-net alternative to the convolutional U-net
that has been used extensively for imaging tasks was presented
here. The presented architecture is distinguished by the pro-
posed k-means cluster max pool layer and clone cluster unpool
layer. The k-means cluster max pool layer behaves similarly
to the max pool layer of the convolutional U-net in that it
aggregates features within local windows of the input’s data
structure. This was different from previously used hierarchical,
node-dropping layers. The clone cluster unpool layer works
naturally with the cluster assignments of the associated k-
means cluster max pool layer to up-sample the input graph

5Electrical Impedance Tomography and Diffuse Optical Tomography Re-
construction Software (EIDORS) is available at eidors3d.sourceforge.net

6Graph Networks for Inverse Problems (GN4IP) is available at github.com/
wherzberg/GN4IP

eidors3d.sourceforge.net
github.com/wherzberg/GN4IP
github.com/wherzberg/GN4IP
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by restoring the original graph structure. The main advantage
of the presented graph U-net over the CNN U-Net is given
by the flexibility provided by the graph framework, allowing
application to irregular data defined over FEM meshes and
being dimension agnostic.

Using EIT as a case study, the new graph U-net was
tested on six different experimental datasets coming from
three different EIT machines both in 2D and 3D. Compared
to the classic CNN alternative, the proposed network shows
comparable performance and the k-means cluster maxpool
layers provide similar behaviour. The advantage of the graph
framework comes with the added flexibility to process on ir-
regular data where interpolation between meshes is undesirable
or computationally expensive. A significant advantage of the
graph, as presented, is the ability to train on lower dimensional
data (e.g. 2D) and application to higher dimensional data (e.g.
3D). This is a conceptual difference to the CNN pixel/voxel
based setting, where filters are dimension dependent.

Compared to the full iterative TV method used as baseline,
the presented post-processing uses only the first few iterates,
effectively reducing the inference time. On average, each
iteration of the TV method took about 1.7 seconds per sample
in 2D, while the application of a trained U-net of either type
took only 0.01 seconds per sample. Therefore, eliminating a
fraction of the required iterations reduces the inference time by
about the same fraction, i.e., 20 versus 4 iterates or less. The
time savings become even more valuable in 3D applications
where the meshes contain more elements and each iteration
of the classical method of choice takes considerably longer,
often even computationally prohibitive.

In regards to inverse problems in general, this work indicates
that GNNs are a flexible option for applying deep learning
and are a viable alternative to other network types. Continued
research on novel GNN layers, architectures, and applications
is encouraging for the future of GNNs for inverse problems.

ACKNOWLEDGEMENT

We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Titan Xp GPUs used for
this research as well as the Raj high performance cluster at
Marquette University funded by the National Science founda-
tion award CNS-1828649 ”MRI: Acquisition of iMARC: High
Performance Computing for STEM Research and Education in
Southeast Wisconsin”. We also thank the EIT groups at RPI
and UEF for sharing the respective experimental data sets.

REFERENCES

[1] J. L. Mueller and S. Siltanen, Linear and nonlinear inverse problems
with practical applications. SIAM, 2012.

[2] B. Kaltenbacher, A. Neubauer, and O. Scherzer, “Iterative regularization
methods for nonlinear ill-posed problems,” in Iterative Regularization
Methods for Nonlinear Ill-Posed Problems. de Gruyter, 2008.

[3] W. Lionheart and A. Adler, “Comparing d-bar and common
regularization-based methods for electrical impedance tomography,”
Physiological measurement, vol. 40, no. 4, p. 044004, 2019.
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Y. Bengio, “Graph attention networks,” 2017. [Online]. Available:
https://arxiv.org/abs/1710.10903

[46] G. Wang, R. Ying, J. Huang, and J. Leskovec, “Multi-hop
attention graph neural network,” 2020. [Online]. Available: https:
//arxiv.org/abs/2009.14332

[47] Y.-C. Su and K. Grauman, “Kernel transformer networks for compact
spherical convolution,” pp. 9434–9443, 06 2019.

[48] A. Hauptmann, B. Cox, F. Lucka, N. Huynh, M. Betcke, P. Beard, and
S. Arridge, “Approximate k-space models and deep learning for fast
photoacoustic reconstruction,” in Machine Learning for Medical Image
Reconstruction: First International Workshop, MLMIR 2018, Held in
Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018,
Proceedings 1. Springer, 2018, pp. 103–111.

[49] A. Hauptmann and J. Poimala, “Model-corrected learned primal-dual
models for fast limited-view photoacoustic tomography,” arXiv preprint
arXiv:2304.01963, 2023.

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2009.14332
https://arxiv.org/abs/2009.14332

	Introduction
	Method
	Learned Reconstruction
	A graph U-net with cluster pooling
	Training

	Case Study: Electrical Impedance Tomography
	Metrics for Success & Experimental Setups
	CNN Comparison Method
	Experimental Data
	Training Data
	Metrics


	Results
	Discussion
	Testing 3D data in 2D networks
	Modifying the Network Architecture
	Further Applications
	Python Package GN4IP

	Conclusion
	References

