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Abstract

The reconstruction task in photoacoustic tomography can vary a lot depending on measured targets,
geometry, and especially the quantity we want to recover. Specifically, as the signal is generated due to
the coupling of light and sound by the photoacoustic effect, we have the possibility to recover acoustic
as well as optical tissue parameters. This is referred to as quantitative imaging, i.e, correct recovery of
physical parameters and not just a qualitative image.
In this chapter, we aim to give an overview on established reconstruction techniques in photoacoustic
tomography. We start with modelling of the optical and acoustic phenomena, necessary for a reliable
recovery of quantitative values. Furthermore, we give an overview of approaches for the tomographic
reconstruction problem with an emphasis on the recovery of quantitative values, from direct and fast
analytic approaches to computationally involved optimisation based techniques and recent data-driven
approaches.

1 Introduction
Photoacoustic tomography (PAT) offers the possibility to examine biological tissue on a micrometer
scale with high contrast by coupling two physical phenomena: light and sound [49, 91]. The obtained
tomographic images carry important structural and quantitative information, which can be used to derive
further biological and clinical markers, such as blood oxygen saturation [8, 17]. For the correctness of
such markers, it is important to have a robust and reliable reconstruction procedure available.

While the underlying reconstruction problem is stable under ideal measurement setups, i.e., a full
boundary coverage and fine sampling with a large bandwidth, the need for faster and more versatile
imaging domains creates the need for more advanced reconstruction methods. In recent years, a multitude
of different approaches have been introduced for the reconstruction problem in PAT, tackling specifically
the acoustic or optical part, or both combined [17, 64, 92]. In this chapter, we will provide an introductory
overview of existing reconstruction approaches, their applicability and possible limitations. We will put
a special emphasis on quantitative reconstruction of correct physical parameters.

To understand the reconstruction task, we first need to define the problem. Mathematically, tomo-
graphic reconstructions are understood as an inverse problem, i.e., determining the cause from a set of
measurements, under the knowledge of the measurement process, or the involved physics [44]. That is,
we aim to recover an image 𝑓 from noise corrupted measurements 𝑔 under knowledge of the measurement
operator, or forward operator, 𝐴 : 𝑓 ↦→ 𝑔. The measurement equation is then simply given by

𝐴 𝑓 + 𝜀 = 𝑔, (1)

where 𝜀 denotes measurement noise, possibly including also mechanical/electronic inaccuracies. The
inverse problem is now to recover the image 𝑓 from measurements 𝑔 under knowledge of the relationship in
(1). This already tells one important aspect of inverse problems, that we need to have a good understanding
of the measurement process and the involved physics. For this purpose, we will first review the forward
problem of photoacoustic tomography in section 2, i.e., the physics of the measurement process.
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In the following sections, we will first discuss the acoustic reconstruction problem, that is the recovery
of a tomographic image representing the initial pressure from the measured acoustic signal. This will
provide a comprehensive overview of reconstruction methods and different paradigms available. We
will then discuss the specifics of reconstructions for the optical problem and the recovery of optical
parameters. We will conclude with a discussion of possible problems that one might encounter in the
reconstruction process, such as uncertainties on measurement parameters and the need for computational
efficiency. Finally, we give a short outlook on the promise of data-driven techniques to overcome some
limitations.

2 Forward modelling
In photoacoustic tomography, a short (ns) pulse of near-infrared light is used to illuminate the region
of tissue of interest. As light propagates within the tissue, it is absorbed by light absorbing molecules
(chromophores). This generates localised increases in pressure, that propagates through the tissue as an
acoustic wave and is detected by ultrasound sensors on the boundary or outside the imaged target. The
propagation of the acoustic wave occurs about five orders of magnitude slower than the light absorption,
and thus the optical and acoustic parts of the problem can be decoupled and treated separately [49].

The forward problem in quantitative PAT is to solve for the photoacoustic time-series on the ultrasound
sensors when the optical and acoustic properties and the input light are given. Solving this problem consist
of computing solutions to the optical and acoustic forward problems.

The process starts with the optical forward problem, where we need to compute the absorbed optical
energy density when the optical properties of the medium and the input light are given. Let us consider
modelling of light propagation and absorption at a single wavelength of light. A widely accepted model
for light transport in tissues is given by the radiative transfer equation (RTE) [40]. The RTE is a one-speed
approximation of the transport equation, and thus it assumes that the energy of the particles does not
change in collisions and that the refractive index is constant in the medium. Let Ω ⊂ R𝑑 , 𝑑 = 2 or 3
denote the physical domain with boundary 𝜕Ω and let 𝑠 ∈ 𝑆𝑑−1 (on the sphere) denote a unit vector in
the direction of interest. In quantitative PAT, the time-independent RTE is utilised

𝑠 · ∇𝜙(𝑟, 𝑠) + (𝜇𝑠 + 𝜇𝑎)𝜙(𝑟, 𝑠) = 𝜇𝑠

∫
𝑆𝑑−1

Θ(𝑠 · 𝑠′)𝜙(𝑟, 𝑠′)d𝑠′, 𝑟 ∈ Ω, (2)

𝜙(𝑟, 𝑠) =
{
𝜙0 (𝑟, 𝑠), 𝑟 ∈ 𝜖 𝑗 , 𝑠 · �̂� < 0,

0, 𝑟 ∈ 𝜕Ω\𝜖 𝑗 , 𝑠 · �̂� < 0, (3)

where 𝜇𝑠 (𝑟) and 𝜇𝑎 (𝑟) are the scattering and absorption coefficients of the medium, respectively, 𝜙(𝑟, 𝑠)
is the radiance, Θ(𝑠 · 𝑠′) is the scattering phase function, 𝜙0 (𝑟, 𝑠) is a source at a position 𝜖 𝑗 ⊂ 𝜕Ω, and
�̂� is an outward unit normal [4, 82]. The scattering phase function Θ(𝑠 · 𝑠′) describes the probability that
a photon with an initial direction 𝑠′ will have a direction 𝑠 after a scattering event. In biological tissue,
the most commonly used phase function is the Henyey-Greenstein scattering function [37]

Θ(𝑠 · 𝑠′) =


1

2𝜋
1−𝑔2

(1+𝑔2−2𝑔𝑠·𝑠′) , 𝑑 = 2
1

4𝜋
1−𝑔2

(1+𝑔2−2𝑔𝑠·𝑠′)3/2 , 𝑑 = 3.
(4)

where 𝑔 is an anisotropy parameter, −1 < 𝑔 < 1.
Due to the computational complexity of the RTE, various approximations are generally utilised in

optical imaging. In a highly scattering medium, the RTE is approximated with the diffusion approximation
(DA). In the DA, the radiance is approximated by

𝜙(𝑟, 𝑠) ≈ 1��𝑆𝑑−1
��Φ(𝑟) − 𝑑��𝑆𝑑−1

�� 𝑠 · (𝜅∇Φ(𝑟)) (5)

where Φ(𝑟) is the photon fluence

Φ(𝑟) =
∫
𝑆𝑑−1

𝜙(𝑟, 𝑠)d𝑠. (6)

Further, 𝜅 =
(
𝑑 (𝜇𝑎 + 𝜇′𝑠)

)−1 is the diffusion coefficient where 𝜇′𝑠 = (1 − 𝑔1)𝜇𝑠 is the reduced scattering
coefficient and 𝑔1 is the mean of the cosine of the scattering angle [4, 82], that in the case of the Henyey-
Greenstein scattering function is 𝑔1 = 𝑔. By inserting the approximation (5) and similar approximations
written for the source term and phase function into equation (2) and following the derivation in [4, 40, 82],
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the DA is obtained

− ∇ · 𝜅∇Φ(𝑟) + 𝜇𝑎Φ(𝑟) = 0, 𝑟 ∈ Ω, (7)

Φ(𝑟) + 1
2𝛾𝑑

𝜅
𝜕Φ(𝑟)
𝜕�̂�

=

{
𝐼𝑠
𝛾𝑑
, 𝑟 ∈ 𝜖𝑖 ,

0, 𝑟 ∈ 𝜕Ω \ 𝜖𝑖 ,
(8)

where 𝐼𝑠 is a diffuse boundary current and 𝛾𝑑 is a dimension-dependent constant which takes values
𝛾2 = 1/𝜋 and 𝛾3 = 1/4 [82]. The DA is a valid approximation when the radiance is almost a uniform
distribution, i.e. in a scattering dominated medium further than a few scattering lengths from the light
source [40]. In PAT, however, imaging depth can be small compared to the average scattering length, and
thus the DA is not always a valid approximation.

Since light absorption and pressure increase occur significantly faster compared to acoustic wave
propagation, they can be modelled instantaneous. The absorbed optical energy density 𝐻 (𝑟) created by
light absorption can be solved from photon fluence as

𝐻 (𝑟) = 𝜇𝑎 (𝑟)Φ(𝑟). (9)

Further, generated pressure can be approximated as an initial pressure 𝑝0 that is connected to the absorbed
optical energy density through the photoacoustic efficiency that can be identified with the Grüneisen
parameter 𝐺 for an absorbing fluid [17]

𝑝0 (𝑟) = 𝑝(𝑟, 𝑡 = 0) = 𝐺𝐻 (𝑟). (10)

The following acoustic forward problem in quantitative PAT is to solve for the photoacoustic time-
series 𝑝(𝑟, 𝑡) at the sensors. Time evolution of the photoacoustic wave can be modelled using the
equations of linear acoustics [19, 88]. For soft biological tissues, it is generally assumed that the medium
is isotropic and quiescent and that shear waves can be neglected. Then, the propagation of initial pressure
can be described as an initial value problem in acoustics using an acoustic wave equation

(𝜕𝑡𝑡 − 𝑣2Δ)𝑝(𝑟, 𝑡) = 0, (11)
𝑝(𝑟, 𝑡 = 0) = 𝑝0 (𝑟), (12)

𝜕𝑡 𝑝(𝑟, 𝑡 = 0) = 0. (13)

The spatial distribution of the speed of sound 𝑣 depends on the target and is usually not known a priori.
Still, it is often assumed to be constant within the medium. The time-series 𝑝(𝑟, 𝑡) on the boundary of
the domain now constitutes the measured signal in photoacoustic tomography, from which we will start
the reconstruction process.

3 Reconstruction of the photoacoustic image
The reconstruction task in PAT follows the reverse order of the forward model, that is we are dealing with
an inverse problem. Specifically, the forward problem starts with the optical illumination, followed by
the generation of the acoustic signal through the photoacoustic effect. The inverse problem consequently
starts with the measured pressure wave on the sensor, from which a we can recover the initial pressure
𝑝0, only after which we can solve the optical problem. Here, the first acoustic problem is linear, whereas
the second optical problem is nonlinear.

In the following we will first discuss the reconstruction task for the acoustic problem in more detail.
The measurement is given by the pressure wave 𝑝(𝑟, 𝑡) on the boundary, i.e., 𝑟 ∈ 𝜕Ω and a finite time
interval [0, 𝑇]. Usually, the measurement is restricted to only a part of the boundary and we may only
collect sub-sampled data. Additionally, the detector will have an angle-dependent frequency response
which needs to be taken into account. For simplicity we assume here that this is encoded in the forward
operator 𝐴 that maps the initial pressure to the measured time-series and we can simply write the
measurement equation as

𝐴 𝑓 + 𝜀 = 𝑔, where 𝑓 (𝑟) = 𝑝0 (𝑟), 𝑟 ∈ Ω, (14)
𝑔(𝑟, 𝑡) = 𝑝(𝑟, 𝑡), 𝑟 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇],

where 𝜀 denotes additional measurement noise. Below, we give a short overview of different inverse
problem solution methodologies applied in PAT. For a more detailed review on reconstruction algorithms,
we refer to a recent review [64].
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Figure 1: (Top left) Ideal PAT measurement setup in 2D with point-like omnidirectional detectors covering
the surface 𝜕Ω surrounding the initial pressure distribution 𝑓 . (Top Right) A typical measurement setup
using a finite-sized linear array of detectors. (Bottom left) The acoustic time series measured by the linear
array. (Bottom right) A PAT image reconstructed from these time series using the classical time reversal
approach showing arc-like artifacts due to the limited view detection. (Figure adapted from [33])

3.1 Direct reconstructions
The acoustic inverse problem is well-posed, when full measurement data exists [96]. That is, the
measurement domain surrounds the whole target and the time-series is measured long enough, i.e., for all
times where the pressure wave is non-zero. This is clearly easier to achieve in a two-dimensional setting
than in 3D, where we often are limited to only a part of the boundary. This leads to what is known as a
limited-view setting, see Fig. 1 for an illustration.

In case there is sufficiently large part of the boundary covered, we can obtain good reconstructions
by backprojection-type algorithms. Here, the data 𝑔 is projected back along a set of spherical shells of
radius 𝑡 = |𝑟 − 𝑟𝑠 |/𝑣 centered on the detector points 𝑟𝑠 . We can define the general class of backprojection
operators 𝐴# that map the measured data 𝑔(𝑟𝑠 , 𝑡) to the reconstructions 𝑓 (𝑟) by projecting the data
back on these shells by the mapping 𝑡 → |𝑟 − 𝑟𝑠 |/𝑣 followed by summation over all detector points 𝑟𝑠 .
Together with a function ℎ(𝑟𝑠 , 𝑡) that is either given by the measurement data or some transformation of
it, depending on the measurement setup. The general backprojection operator is then given by

(𝐴#𝑔) (𝑥) =
∫
𝜕Ω

[ℎ(𝑟𝑠 , 𝑡)]𝑡= |𝑟−𝑟𝑠 |/𝑣 𝑑𝑠(𝑟𝑠) (15)

where 𝑑𝑠 is an area element on the measurement surface 𝜕Ω. Clearly, the recovery of quantitative values,
in contrast to qualitative reconstructions, depends on the filter function ℎ(𝑟𝑠 , 𝑡). For instance, in case of
the adjoint operator 𝐴∗ [5] the backprojection takes the form

(𝐴∗𝑔) (𝑥) =
∫
𝜕Ω

[
1

4𝜋 |𝑟 − 𝑟𝑠 |
𝜕𝑔

𝜕𝑡
(𝑟𝑠 , 𝑡)

]
𝑡= |𝑟−𝑟𝑠 |/𝑣

𝑑𝑠(𝑟𝑠), (16)
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which primarily provides a qualitative reconstruction with slightly over estimated contrast.
In case of the well-known ‘universal backprojection’ algorithm [94], we obtain exact reconstructions

with correct quantitative values for spherical and cylindrical [22, 46] or even planar measurement surfaces
that enclose the target.

3.1.1 Time reversal

The wave equation can be stably solved backwards in time and hence one can obtain a physically intuitive
approach to reconstruction by so-called time reversal [39, 95], but one needs to be careful of the boundary
conditions. Given the measurement surface 𝜕Ω surrounding the measurement domain in which the target
is supported 𝑓 ⊂ Ω. In the forward model, the photoacoustically-generated waves are propagating
outwards and are measured on the surface 𝜕Ω until after suitably long time 𝑇 the acoustic field in Ω is
zero.

In the time reversal process, we assume that measured pressure 𝑔(𝑟𝑠 , 𝑡) is now produced on 𝜕Ω in
time-reversed order, starting with 𝑔(𝑥𝑠 , 𝑇). Thus, the acoustic field in Ω created by the in-going waves
reproduces the out-going wavefield exactly, but backwards in time. Consequently, the acoustic field
at 𝑡 = 0 will reproduce the initial acoustic pressure 𝑓 (𝑟) = 𝑝0 (𝑟). Numerically, time reversal image
reconstruction solves the following time-varying boundary value problem for the time-reversed field
𝑝− (𝑟, 𝑡−), from time 𝑡− = 0 to 𝑇 ,

(𝜕𝑡𝑡 − 𝑣2Δ)𝑝− (𝑟, 𝑡−) = 0, (17)
𝑝− (𝑟𝑠 , 𝑡−) = 𝑔(𝑟𝑠 , 𝑇 − 𝑡−), (18)

𝑝− = 𝜕𝑡 𝑝− (𝑟, 0) = 0. (19)

We then obtain at final time 𝑇 the reconstruction 𝑝− (𝑟, 𝑇) = 𝑓 (𝑟) for 𝑟 ∈ Ω. A reconstruction by time
reversal is shown in Fig. 1 for a limited-view geometry in 2D.

3.2 Variational methods
In limited-view or when only sparsely sampled data is available, direct reconstructions often do not
perform sufficiently well, qualitatively as well as quantitatively. In such scenarios it is advised to utilise
so-called variational methods [3, 76]. That is, the reconstruction 𝑓 ∗ is sought as minimiser of a cost
functional that measures data-fit together with a regulariser,

𝑓 ∗ = arg min
𝑓

∥𝐴 𝑓 − 𝑔∥2
2 + 𝛼Ψ( 𝑓 ). (20)

Here, the data-fidelity term ∥𝐴 𝑓 − 𝑔∥2
2 naturally ensures that the reconstructed image fits the measured

data and hence 𝑓 ∗ also provides correct quantitative values. The regulariser Ψ( 𝑓 ) has a two-fold purpose,
first of all it ensures well-posedness of the reconstruction task and stabilises the optimisation, additionally
it allows to model prior knowledge on the target structures by penalising undesired features. Typical
regulariser are, for example, Tikhonov regularisation Ψ( 𝑓 ) = ∥ 𝑓 ∥2

2 that supports smoothness of the
reconstruction, the total variation penalty Ψ( 𝑓 ) = ∥∇ 𝑓 ∥1, which enforces reconstructions to be piece-
wise constant and hence is highly effective in noise suppression [3, 11, 90], higher order variants [13], as
well as generally regulariser based on the 1-norm promoting sparsity [28]. The parameter 𝛼 > 0 in (20)
balances both terms and allows one to fine tune the desired reconstructions: a small parameter allows
for emphasis on the data-fit (advised under small noise), whereas a large parameter enforces stronger
regularity. In other words, we choose how much we trust the measured data.

Reconstructions are then computed by optimisation techniques that minimise (20) iteratively. If
both data-fidelity and regulariser are differentiable, gradient gradient descent methods can be utilised.
Whereas the data-fidelity using the 2-norm is differentiable, popular choices for the regulariser are based
on sparsity and are often based on the non-differentiable 1-norm. Thus, one often uses techniques from
convex analysis1 and optimisation to compute minimiser [10]. One such option are proximal gradient
descent schemes. Here, we start with some initialisation 𝑓0 = 𝐴#𝑔, we then iteratively take the gradient
with respect to the differentiable data-fidelity, given by ∇ 𝑓 ∥𝐴 𝑓 − 𝑔∥2

2 = 2𝐴∗ (𝐴 𝑓 − 𝑔), followed by the
application of a proximal operator that incorporates the regularisation for convex Ψ( 𝑓 ). The iterations
are then given by

𝑓𝑘+1 = proxΨ,𝛼𝜆𝑘
(
𝑓𝑘 − 𝜆𝑘𝐴∗ (𝐴 𝑓𝑘 − 𝑔)

)
, (21)

1Note, that the problem (20) [72] is convex if 𝐴 is linear and the regulariser Ψ( 𝑓 ) is convex.
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Figure 2: Reconstructions in 3D from fully-sampled and sub-sampled limited-view measurements. (Top
Row) The phantom in 3D and cross section: the measurement sensor is marked in red on the top. (Middle
row) Reconstruction from ideal fully-sampled measurements: backprojection by the adjoint on the left and an
iterative reconstruction using only non-negativity as regularizer on the right. (Bottom row) Reconstructions
from sub-sampled data: The sub-sampling pattern is shown on the left and two reconstructions with non-
negativity (NNLS) and total variation (TV) on the right. (Figure adapted from [35])

where the proximal operator projects solutions to the admissible space of the regulariser by solving
another simpler optimisation problem

proxΨ,𝛼𝜆𝑘 ( 𝑓 ) = arg min
ℎ

{
Ψ(ℎ) + 1

2𝛼𝜆𝑘
∥ℎ − 𝑓 ∥2

2

}
. (22)

The advantage of the proximal operator are two-fold as well, first for some choices of Ψ( 𝑓 ) there is a
closed form solution, such as the 1-norm Ψ( 𝑓 ) = ∥ 𝑓 ∥1. Second, the problem (22) does not involve the
forward operator 𝐴 and hence is a denoising problem for which many efficient algorithms exist, this is
the case for total variation.

An illustration of reconstructions using the variational approach is shown in Fig. 2. The backpro-
jection clearly leaves visible limited-view artefacts and loss of contrast in the deeper areas. Whereas,
iterative reconstructions can effectively remove those by iteratively enforcing data consistency. When
fully sampled data is available, just enforcing non-negativity as regulariser is sufficient, for sub-sampled
measurements a stronger regulariser is needed, such as total variation enforcing piece-wise constant
targets, effectively eliminating the residual noise.

3.3 Bayesian methods
In a Bayesian approach, the inverse problem is solved in the framework of statistical inference [44]. All
parameters are considered as random variables, and information about these parameters is expressed
by their probability distributions. In the inverse problem, the idea is to obtain information about the
parameters of primary interest based on the measurements, the model, and the prior information about
the parameters. The solution of the inverse problem is then given by the posterior probability distribution
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𝜋( 𝑓 |𝑔), that according to Bayes’ theorem can be presented as a conditional probability density function
of the form

𝜋( 𝑓 |𝑔) ∝ 𝜋(𝑔 | 𝑓 )𝜋( 𝑓 ), (23)
where 𝜋(𝑔 | 𝑓 ) is the likelihood density and 𝜋( 𝑓 ) is the prior density. Considering the observation model
with additive noise (14), the likelihood probability distribution can be written as

𝜋(𝑔 | 𝑓 ) = 𝜋𝜀 (𝑔 − 𝐴 𝑓 ) (24)

where 𝜋𝜀 (·) is the probability density of the noise 𝜀. Let us model noise 𝜀 and unknown 𝑓 as Gaussian
distributed, i.e. 𝜀 ∼ N(𝜂𝜀 , Γ𝜀) and 𝑓 ∼ N(𝜂 𝑓 , Γ 𝑓 ) where 𝜂𝜀 and Γ𝜀 are the mean and covariance of
the noise and 𝜂 𝑓 and Γ 𝑓 are the mean and covariance of the prior for the unknown 𝑓 . In this case, the
posterior probability density can be written as

𝜋( 𝑓 |𝑔) ∝ exp
{
−1

2
∥𝐿𝜀 (𝑔 − 𝐴 𝑓 − 𝜂𝜀)∥2 − 1

2
𝐿 𝑓 ( 𝑓 − 𝜂 𝑓 )2

}
, (25)

where 𝐿T
𝜀𝐿𝜀 = Γ−1

𝜀 and 𝐿T
𝑓
𝐿 𝑓 = Γ−1

𝑓
are the square roots such as the Cholesky decompositions of the

inverse covariance matrices of the noise and prior, respectively.
In the case of a linear observation model and Gaussian noise and prior, the posterior density is also a

Gaussian distribution [44, 86]
𝑓 |𝑔 ∼ N(𝜂 𝑓 |𝑔Γ 𝑓 |𝑔),

where the mean 𝜂 𝑓 |𝑔 and covariance Γ 𝑓 |𝑔 can be written in the form

𝜂 𝑓 |𝑔 = 𝐾−1𝑏 and Γ 𝑓 |𝑔 = 𝐾−1, (26)

with

𝐾 = 𝐴TΓ−1
𝜀 𝐴 + Γ−1

𝑓
, (27)

𝑏 = 𝐴TΓ−1
𝜀 (𝑔 − 𝜂𝜀) + Γ−1

𝑓
𝜂 𝑓 . (28)

In case solving the posterior distribution directly using Eqs. (26)–(28) is computationally too expensive,
it can be evaluated using a matrix free approach, for example [85]. The advantage of a Bayesian approach
lies in the additional information on mean and variances of the computed solutions, which allows for
uncertainty quantification giving estimates on the correctness of solutions.

3.4 Data-driven reconstruction methods
In recent years, data-driven approaches have gained considerable interest due to their ability to learn data-
specific representations. That means, instead of designing hand-crafted analytic priors (in the variational
setting) or statistical priors (in the Bayesian setting), one can now utilise large quantities of representative
data. In most cases, these are given by ideal reconstructions, but here also lies the primary limitation
in photoacoustic tomography, since large quantities of ideal or ground-truth reconstructions are not easy
to collect, especially in three-dimensions. Additionally, at the current stage there are limited guarantees
available on the correctness of the reconstructions apart from empirical evaluations. In the following we
give a short summary of the underlying paradigm of learned reconstruction methods in the context of
photoacoustic tomography, for a complete review we refer to [27, 33, 97].

In general terms, the aim of learned image reconstruction is to design a parameterised reconstruction
operator 𝑅𝜃 with learnable parameters 𝜃, such that

𝑅𝜃 (𝑔) ≈ 𝑓 . (29)

Clearly, there are many ways to define such a learned reconstruction operator, as there are many classical
reconstruction approaches available as well. We can roughly group approaches into three classes:

i. The fully learned approach: Here, 𝑅𝜃 is purely given as a neural network 𝐺 𝜃 : 𝑔 ↦→ 𝑓 that directly
transform the measurements into reconstructions. See, for examples [77, 89].

ii. The two-step approach: First a classical reconstruction is obtained by, e.g., a backprojection
𝐴# : 𝑔 ↦→ �̃� , which is usually corrupted by noise, undersampling and possible limited-view
artefacts. A neural network 𝐺 𝜃 : �̃� ↦→ 𝑓 is then trained to remove these artefacts [2].

iii. Learned iterative (model-based): Here, neural networks and the forward/adjoint operator are
intertwined in an iterative way [35]. That is, the reconstruction is updated repeatedly motivated by
the variational formulation. This can be achieved, for instance, by replacing the proximal operator
in (21) with a neural network, such that 𝐺 𝜃 : 𝑓𝑘 ↦→ 𝑓𝑘+1.
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Generally speaking, while the model information increases from i. to iii. the complexity of the learning
task decreases, i.e., the network needs to learn an easier operation. This decrease in complexity does also
reduce the quantity of necessary data to train the network, but comes with an increase of computational
complexity due to the involvement of 𝐴. In practice, it is important to choose the most suitable approach
for ones needs.

When aiming for correct and reliable quantitative reconstructions with learning based approaches,
there are unfortunately only limited guarantees on correctness. At this stage, the majority of approaches
does rely on empirical validation rather than theoretical guarantees. Nevertheless, current theoretical re-
search concentrates on providing reconstruction guarantees. This can be primarily achieved by restricting
the networks 𝐺 𝜃 , but usually also reduces expressivity of the network and hence results in a reduction of
performance, see [61] for a recent survey on the subject of provably convergent learned reconstructions.

4 The inverse problem of quantitative photoacoustic tomog-
raphy
As the second step of quantitative photoacoustic imaging, optical parameters are estimated from the pho-
toacoustic images obtained as the solution of the acoustic inverse problem. This second inverse problem
includes a nonlinear forward model describing light propagation in tissues. Most of the approaches for this
optical inverse problem have been based on using the DA (7)–(8) as light transport model. However, the
RTE (2)–(3) [29, 56, 67, 75, 83] and Monte Carlo method for light transport [14, 15, 30, 38, 48, 54] have
also been utilised. In addition to modelling light propagation and absorption, photoacoustic efficiency
identified by the Grüneisen parameter, Eq. (10), needs to be taken into account.

Estimation of more than one optical parameter is a non-unique problem if only one light illumination
is used. To overcome this, one approach has been to assume the scattering as known [14, 18, 42, 71].
However, in practical applications scattering is typically not known. It has been shown that the non-
uniqueness can be overcome by using multiple optical illuminations [6]. Also combining photoacoustic
with diffuse optical tomography (DOT) data have been used to ease the non-uniqueness [51, 63, 70].

4.1 Optical inverse problem
The aim in quantitative PAT is to estimate the concentrations of chromophores. Generally, the absorption
coefficient can be expressed as a linear combination of the chromphore concentrations

𝜇𝑎 (𝜆) =
𝐾∑︁
𝑘=1

𝛼𝑘 (𝜆)𝐶𝑘 , (30)

where 𝛼𝑘 and 𝐶𝑘 are the absorption coefficient and concentration of the 𝑘th chromophore, and 𝜆

is the wavelength of the light. Estimation of the concentrations of chromophores can be achieved
either by directly estimating the concentrations from photoacoustic time-series obtained using different
wavelengths of light [7, 20, 47, 56, 66, 69, 68] or by first recovering the absorption coefficients at
different wavelengths and then calculating the concentrations utilising (30) for the absorption spectrum
[7, 17, 20, 66]. Sometimes, researchers are interested in secondary quantities that can be computed
from the optical parameters [12]. One such quantity of high clinical interest is blood oxygen saturation
(𝑠𝑂2) [50], which is related to the concentrations of the two endogenous chromophores, oxy- and deoxy-
hemoglobin. Different approaches for solving the optical inverse problem have been proposed. Here, we
give a short summary of those approaches. For more information, see e.g. the recent review [92] and the
references therein.

Perhaps the most simple approach for estimating the optical absorption in quantitative PAT has been
to assume the photon fluence as known or solvable using some predefined optical parameter values, and
then solve the absorption utilising so-called fluence correction methods [100]. The drawback of these
approaches is that both absorption and scattering affect photon fluence, and thus approximating these
as preassigned parameters creates modelling errors. Alternatively, linearised models leading to simple
solvers for estimating absorption [18, 98] or absorption and scattering simultaneously [78] have been
utilised.

In most studies on the optical inverse problem, simultaneous estimation of absorption and either
scattering or diffusion have been considered. The inverse problem has been approached, for example,
using direct methods [6, 7, 56]. Similarly as in the acoustic problem, a commonly utilised approach
has been to estimate the optical parameters 𝑥 by formulating the problem as a regularised minimisation
problem

𝑥∗ = arg min
𝑥

∥𝐵(𝑥) − 𝑦∥2
2 + 𝛽Ψ(𝑥) (31)

8



Figure 3: Direct estimation of blood oxygenation saturation maps from multi-wavelength acoustic recon-
structions of initial pressure in 3D of simulated human tissue phantoms. (Left) Input slices (through 3D
volume) of reconstructed initial pressure at 4 wavelengths. (Right) Neural network estimation of 𝑠𝑂2 maps
in 3D. (Figure adapted from [9])

where 𝐵 denotes the optical forward operator, 𝑦 is the data of the optical inverse problem, 𝛽 is the
regularisation parameter and Ψ is a regularising penalty functional. Typically, Tikhonov regularisation
[75] supporting smoothness of the solution, total variation [24, 32, 83] promoting piece-wise constant
parameters, and ℓ1-norm regularisation [99] promoting sparsity in the solution have been utilised. The
minimisation problem (31) has been solved using methods of computational optimisation. Alternatively,
a Bayesian approach leading to a maximum a posteriori (MAP) estimation problem has been taken
in [30, 48, 63, 66, 84] enabling inclusion of quantitative prior models and modelling of noise and
uncertainties. Furthermore, examples of alternative approaches to the optical inverse problem include
[1, 73] where the absorption and the photon fluence were extracted using a sparse signal representation.
Further, in [62] boundaries between piece-wise constant optical parameters were estimated, and in [55]
a combined reconstruction-classification approach was proposed.

Similarly as for the acoustic problem, data-driven approaches have been utilised recently to solve
the optical part, albeit there are fewer approaches proposed. A common approach follows the two-step
method ii., where acoustic reconstructions are available. Then, a neural network is trained to recover the
absorption coefficient distribution [16]. As mentioned before, there is often interest in computing related
quantities such as the blood oxygen saturation 𝑠𝑂2. A few works have proposed to use a neural network
similarly as in the previous approach, but instead of recovering the absorption coefficient, the network is
trained to directly produce 𝑠𝑂2 maps from multi-wavelength acoustic reconstructions [9, 26], see Fig. 3
for an illustration. Currently, there are no equivalent approaches to the model-based iterative paradigm
iii. for the optical part, but there are studies for the related problem of DOT. Here, the authors proposed
a learned iterative update for the Gauss-Newton algorithm [60].

4.2 Single-stage approaches
In addition to the two-step approach where acoustic and optical inverse problems are solved one after
another, estimation of the optical parameters directly from the photoacoustic measurements have also
been studied. This one-step approach was formulated utilising the Born approximation in [79, 81].
Furthermore, one-step approaches using Tikhonov regularisation [29], ℓ1 sparsity regularisation [23],
and total variation regularisation [41] have been considered. Further, a Bayesian approach for the single-
stage approach was formulated in [65]. In [21], a one-step approach was used to recover the speed of
sound and optical parameters simultaneously.

The authors in [25] investigated the possibility to directly recover optical parameters from the measured
acoustic signal using machine learning methods. It was reported that such a naive approach is generally
outperformed, especially in terms of generalisation capabilities to unseen data, by methods that use
intermediate data or model information.
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5 Conclusions and outlook
Much of the theory and analytical approaches on reconstructions for quantitative PAT assumes ideal
measurement environments. In practice, however, the photoacoustic signal is affected by the measurement
system, for example bandwidth and directivity of the acoustic sensors, as well as uncertainties related to
the measurement setup. Therefore, a complete modelling of photoacoustic data requires, in addition to
modelling optical and acoustic phenomena, modelling of measurement system specifics. Furthermore,
regardless of carefully considering all measurement setup specifics, modelling of them always contains
uncertainties. Examples of such uncertainties include, e.g., uncertainties in modelling the locations of
the ultrasound sensors, variations in the light illumination, uncertainties in the frequency response of
the ultrasound sensors, etc. These all can affect the accuracy of the image reconstruction methodology
and result into artefacts in images, errors in quantitative estimates, and less reliable confidence intervals.
Compensating errors and uncertainties in photoacoustics have been studied, for example, using Bayesian
approximation error modelling [31, 74, 84] and utilising learned model correction methods [53].

Additionally, fundamental challenges are given by the physics. One such problem is given by the
speed of sound that is often assumed to be constant and even when assumed constant, the accurate
value inside the tissue may still not be known. In principle, a spatially-varying speed of sound could
be recovered jointly with the acoustic reconstruction, although this problem is inherently unstable and
requires additional data or prior knowledge [58, 45, 52, 57]. One possibility here is the use of a
separate modality, such as ultrasound tomography [43, 93, 59], to recover a speed of sound map prior to
reconstruction. More generally, in the Bayesian setting, errors due to uncertainties in the speed of sound
can be compensated for using Bayesian approximation error modelling [87], but the method is limited
to small variations in the speed of sound or prior knowledge of the regions with larger variations. Here,
data-driven methods can be helpful when the uncertainty on model parameters is incorporated into the
training data. In this case, empirical evidence shows that the networks can learn to compensate for this
uncertainty in the learned reconstruction.

Finally, the most accurate and stable reconstructions can still be obtained by model-based techniques,
but the need to repeatedly evaluate the model equations leads to an immense computational overhead,
that limits real-time applicability. This is even true for learned methods that do involve physics modelling
to some extent, either in a two-step reconstruction or in learned iterative approaches. An area of active
research considers how to effectively cut-down the computational bottle neck of the involved models
by using model reduction techniques (coarser discretistations) or approximate models (making certain
simplifying assumptions) [19, 34]. This results in a very similar problem as in model uncertainties,
except that these are now introduced as additional complication. Here, the data-driven paradigm is espe-
cially promising, as we can effectively simulate training data and compensate the additional introduced
approximation errors using neural networks [36, 53, 80].

In conclusion, while the basic mathematical problem of quantitative PAT is solved, there are still many
problems that need to be considered to achieve reliable and fast quantitative reconstructions in practice.
The primary challenge can be identified as arising uncertainties when imaging in-vivo, as opposed to
ideal simulated studies, as well as computational limitations that one encounters in high-dimensional and
possibly even temporal data. Data-driven approaches offer some new opportunities, but are certainly not
the only solution, as their generalisation capabilities and robustness to changing imaging setups is still not
fully understood. This emphasises the need for fundamental research to further our basic understanding,
in combination with modern data-driven techniques.
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