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Abstract. Inverse problems are in many cases solved with optimization techniques. When the underlying
model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due
to nonconvexity, one must often resort to second-order methods that are computationally more
expensive. In this work we aim to approximate a nonlinear model with a linear one and correct
the resulting approximation error. We develop a sequential method that iteratively solves a linear
inverse problem and updates the approximation error by evaluating it at the new solution. This
treatment convexifies the problem and allows us to benefit from established convex optimization
methods. We separately consider cases where the approximation is fixed over iterations and where
the approximation is adaptive. In the fixed case we show theoretically under what assumptions the
sequence converges. In the adaptive case, particularly considering the special case of approximation
by first-order Taylor expansion, we show that with certain assumptions the sequence converges to
a critical point of the original nonconvex functional. Furthermore, we show that with quadratic
objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase
numerical results superior to the conventional model correction method. We also show, that a fixed
approximation can provide competitive results with considerable computational speed-up.
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1. Introduction. Inverse problems appear in numerous places in mathematics, engineer-
ing and medicine [4, 31]. They deal with deducing cause from the observed effects (data).
Mathematically, the problem is often written in the form

(1.1) y = A(x),

where y ∈ Y is the measured data and x ∈ X the unknown cause. Here A : D(X)→ Y , where
D(X) ⊂ X, is a (possibly) nonlinear model that describes how the measurements are linked to
the cause. We assume that both X and Y are infinite-dimensional Hilbert spaces. The inverse
problem is then often solved by finding a cause that best matches the data when inserted into
the model. Since the problem is usually ill-posed, one has to constrain the solution through
regularization. Mathematically this is a variational optimization problem of the form

(1.2) x∗ = arg min
u∈X

{F (A(u), y) + λR(u)}

where the minimized objective function is a sum of functions F : Y × Y → R+ and R : X →
R+. The first part measures the mismatch between the data and the model output (data
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fidelity), and the second part regularizes the solution. (Here, λ > 0 is a regularization pa-
rameter to be adjusted for each data separately.) In this work we assume that both parts are
given by convex functions, e.g. a norm. Given these assumptions, if the model is linear, the
resulting objective function is also convex. This means that it has a unique minimizer which
can be efficiently found with first-order optimization techniques such as gradient descent or
primal-dual methods which are usually computationally cheap to implement [6]. In this case
the Fréchet derivative of the forward model appearing in the gradient of the objective func-
tion is independent of the input of the model, and thus computationally cheap to evaluate
repeatedly. However, if the model is nonlinear, the Fréchet derivative depends on the input of
the model and must be recomputed for every input. This becomes computationally inefficient
particularly when the model is given in functional form and differentiation must be carried
out by using numerical methods. Furthermore if the model is nonlinear, the objective function
is generally nonconvex with multiple local minima. In this case first-order methods usually
converge slowly since the gradient only carries information about the local steepness of the
objective function. Thus, the Gauss-Newton method is often used for solving nonlinear inverse
problems. It is a modification of Newton’s method that utilizes linearization to avoid comput-
ing higher than first-order derivatives. Recently, extensions of primal-dual methods allowing
nonlinear models have also been proposed [12,46], which are also based on linearization of the
model.

The purpose of this work is to solve the nonlinear inverse problem with a linear approxi-
mation, unlocking the benefits of first-order convex optimization. As mentioned in the earlier
paragraph, the benefits include faster convergence and speed-up in the computation. The
approximation naturally creates an approximation error that we have to account for. In this
work, we assume that we have access to the accurate model to evaluate the approximation
error locally when needed.

Compensations of approximation errors have been extensively studied in the literature.
For instance, modeling errors can be efficiently corrected with the established approximation
error method (AEM) [3,20] and has been successfully applied in a wide area of inverse problems
[10, 16, 32, 38, 45]. It is a linear correction that assumes that the approximation error has a
Gaussian distribution. The mean vector and covariance matrix of the distribution must be
estimated as a part of solving the inverse problem, for instance from training data under
knowledge of the accurate forward operator. Naturally, AEM has trouble dealing with non-
Gaussian approximation errors, which we also illustrate. To overcome this limitation, some
recent works have proposed neural networks for model correction [17, 23, 28, 30, 43], in which
case the correction is nonlinear. Neural networks succeed in the task but require training data
that represent the solution space well enough. A related problem is model approximation using
so-called surrogates [27,50]. A surrogate model is an approximative model used often when the
exact model is too slow to evaluate. The surrogate, modeled for example by neural networks
or Gaussian processes, is trained with pairs of inputs and outputs of the true model and can
greatly speed up for example Markov chain Monte Carlo (MCMC) computations requiring
hundreds of thousands of model evaluations. However, surrogate-based models suffer from the
curse of dimensionality as the number of training samples needed grows exponentially with
the dimension of the parameter space. Alternatively, when only the approximate operator is
known, but an estimate on the error exists, one can utilize the regularizing sequential subspace
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optimization method [7,33,39] to compensate for the additional error. Another approach has
been proposed in [8,24] using partially ordered spaces, where upper and lower bounds on the
accurate operator are available.

We will particularly consider imaging applications in this work. A prototypical example
of ill-posed inverse problem in imaging is deconvolution [31,49]. The purpose of deconvolution
is to restore an image degraded by some kernel. The kernel can be thought of as a filter that
integrates local information of the image thereby reducing its quality. Convolution is also
closely connected to diffusion processes, namely diffusion can be seen as convolution with a
Gaussian kernel [2]. If the kernel does not depend on the image, diffusion is a linear operator.
When the kernel is let depend on the image, the operator becomes nonlinear. This can be
done for example with the Perona-Malik filter, where the diffusion strength depends on the
magnitude of the image gradient [36]. Thus areas of the image with edges are diffused less
than smoother areas.

To deal with the aforementioned problems, we propose a sequential model correction
method. Starting from an initial point, we iteratively update the approximation error by
evaluating it at the current iterate and solve the inverse problem using the approximate model,
eventually converging to a solution. The procedure locally linearizes and thus convexifies the
variational problem. We note that we assume that we can evaluate the exact forward model
and the approximate model for any x ∈ X. This is required for evaluating the approximation
error accurately. We investigate two different cases: one where the approximation is fixed
over sequence iterations and one where the approximation adapts locally. The summary of
the results of this paper is as follows:

(i) For the fixed approximation, we derive the conditions needed for the convergence of
the sequence.

(ii) For the adaptive approximation, we show that under certain conditions on the ap-
proximation, taking small enough steps in the sequence always decreases the original
objective function. With further regularity assumptions, we show that the sequence
converges to a critical point of the original objective function.

(iii) If the approximation is chosen as a first-order Taylor expansion of the accurate model
and the data fidelity and regularization terms are both quadratic, we recover the
Gauss-Newton method.

Finally we show with examples that the sequential model correction method outperforms
AEM with various models, while being computationally efficient. While we have to be able to
evaluate the accurate forward model, we need only few evaluations. Particularly, we show that
a fixed approximation can yield similar quantitative results than the adaptive approximation,
with a computational speed-up of up to factor 8.

This paper is organized as follows: in Section 2 we define notation, state the problem
mathematically and introduce the approximation error method. In Section 3 we analyze the
convergence of the method. The analysis is separated into fixed and adaptive cases. We also
show the connection to the classic Gauss-Newton method. In Section 4 we introduce the
models used in numerical experiments and discuss implementation details. The results are
shown and discussed in Section 5. Finally, concluding remarks are given in Section 6.

3



2. Problem statement. Let us first establish notation and assumptions used throughout
this paper unless otherwise stated.

Symbol Meaning

y Measured data

x, u Unknown we want to reconstruct

X,Y Hilbert spaces. Norm ‖ · ‖X/Y , inner product 〈·, ·〉X/Y
A : X → Y True nonlinear forward operator

Ã : X → Y Linear approximation of A

F : Y × Y → R+ Convex data fidelity functional

R : X → R+ Convex regularization functional

λ > 0 Regularization parameter

We wish to solve the inverse problem

(2.1) y = A(x) + e

for the unknown x, where e is noise. In the variational framework, solving the inverse problem
amounts to solving the variational problem

(2.2) x∗ = arg min
u∈X

{F (A(u), y) + λR(u)} .

For solving the variational problem (2.2) one needs the Fréchet derivative of A, as discussed
earlier. Since A is nonlinear, the Fréchet derivative depends on the input, and hence must
be recomputed for each input which is time consuming particularly in iterative optimization
algorithms. For this reason we wish to approximate A with a linear model Ã. The Fréchet
derivative of a linear model is independent of the input, making it computationally easier to
handle. Writing (2.1) in terms of Ã yields

(2.3) y = Ãx+A(x)− Ãx+ e = Ãx+ ε(x) + e.

We note that here the approximation by linear model creates an approximation error, denoted
by ε(x). Clearly this formulation of the model is still nonlinear, we have just moved the
nonlinearity into ε(x). Let us then assume that we have access to some initial reconstruction
x0 ∈ X. We can then write the model as

(2.4) y ≈ Ãx+ ε(x0) + e,

which is linear since x0 is known. This also means we can evaluate ε(x0). This leads to the
convex variational problem

(2.5) x∗ = arg min
u∈X

{
F (Ãu, y − ε(x0)) + λR(u)

}
,
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which gives us a local reconstruction depending on x0. From here it is natural to expand this
construction into a sequence

(2.6) xk+1 = S(xk) = arg min
u∈X

{
F (Ãu, y − ε(xk)) + λR(u)

}
.

We emphasize that updating the sequence, i.e., solving a linearized and thus convex optimiza-
tion problem can be done efficiently with first-order optimization methods.

In the following we aim to:
(i) Analyze the sequence (2.6) theoretically from a model correction perspective. We de-

rive conditions needed for the convergence of the sequence. We also draw connections
to existing methods for nonconvex optimization, i.e., with certain choices for the ap-
proximate model and the data fidelity and regularization functionals, we obtain the
Gauss-Newton algorithm.

(ii) Show that the sequential model correction method delivers superior results compared
to the conventional method.

2.1. Approximation error method and non-Gaussianity of the approximation error.
In this section we consider a finite-dimensional setting, that is, X = Rm and Y = Rn.
AEM has traditionally been used for model correction in inverse problems. It exploits the
normal distribution to integrate the approximation error out of the model. It assumes that
ε(x) ∼ N (µε,Σε), where µε and Σε are estimated for instance from a training data set
{xi}Ni=1 [20, 28]. The accurate and approximate model are applied to each data point such
that εi = A(xi)− Ãxi. Then the estimates for the mean vector and covariance matrix are

(2.7) µ̂ε =
1

N

N∑
i=1

εi, Σ̂ε =
1

N − 1

N∑
i=1

(εi − µ̂ε)(εi − µ̂ε)T .

Furthermore, the noise e is assumed independently Gaussian with zero-mean and variance σ2.
Thus we have cov(ε+e) = Σε+σ2I, assuming mutual independence of the terms. This allows
us to write the variational problem as

(2.8) x∗ = arg min
u∈Rm

{
1

2
‖L−1(Ãu− y + µ̂ε)‖22 + λR(u)

}
,

where L is the Cholesky factor of Σ̂ε + σ2I such that Σ̂ε + σ2I = LTL. We note that here we
need to assume that the data fidelity is given as a squared `2-norm.

AEM specifically assumes that the approximation error has a Gaussian distribution. In
this case multiplying the data with the inverse of the Cholesky factor whitens the noise,
making it identically Gaussian, which justifies the use of squared `2-data fidelity. However,
non-Gaussian errors arise especially when trying to correct nonlinear models. This can be seen
by assuming a Gaussian distribution for the unknown, i.e., x ∼ N (m,C), and then looking
at the distribution of the approximation error. When approximating a linear model with a
linear model, the distribution of the approximation error (A− Ã)x is still Gaussian with mean
(A−Ã)m and covariance (A−Ã)C(A−Ã)T . With nonlinear A this is no longer the case since
the mean is not a linear function of m, meaning it would be different for all x ∈ X. Similarly
the covariance would involve the Jacobian of A, which is different depending on the point in
X we are at.
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3. Convergence of the sequence. We split the theoretical analysis into two parts. In the
first part we assume that the approximation is fixed, i.e. it does not depend on the sequence
iteration index k. In the second part we let the approximation depend on k. In the fixed
case, we state the conditions needed for the convergence of the sequence. For the adaptive
case, we consider the special case of local linear approximation at xk given by the first-order
Taylor expansion. In that case we can show that the original nonconvex function decreases at
each step of the sequence. The obtained result readily extends to other approximations that
provide a descent direction.

3.1. Fixed approximation. In the case of fixed approximation we investigate the conver-
gence conditions of the sequence based on fixed point iterations. We recall that an iterated
function is defined by a composition S ◦ · · · ◦ S for S : X → X. Then, the Banach fixed-
point theorem states that if S is contractive, i.e., K-Lipschitz with K < 1, the iterations will
converge to a unique fixed point. We will use this theorem to state general conditions under
which the sequence (2.6) converges. We will start with simple cases to gain intuition into the
subject and work our way to more general cases of the functional F (A(u), y) + λR(u).

We start by looking at a simple invertible linear system and the behavior when we ap-
proximate the exact operator with another invertible linear operator.

Theorem 3.1 (Linear and invertible operators). Let both A : X → Y and Ã : X → Y be
linear and invertible and R = 0. Furthermore, let the operator norm of I − Ã−1A be smaller
than one. Then sequence (2.6) converges to x∗ = A−1y.

Proof. We have xk+1 = S(xk) = Ã−1(y − ε(xk)). Hence for x1, x2 ∈ X,

‖S(x1)− S(x2)‖X = ‖x1 − Ã−1Ax1 − x2 + Ã−1Ax2‖X
= ‖(I − Ã−1A)(x1 − x2)‖X
≤ K‖x1 − x2‖X ,

where the Lipschitz constant K is the operator norm of I−Ã−1A. Thus by Banach fixed-point
theorem, S is a contraction and admits a unique fixed point. Let x∗ be a fixed point of S.
Then

x∗ = Ã−1(y −Ax∗ + Ãx∗)

⇐⇒ x∗ = A−1y
(3.1)

The result essentially means that if Ã−1A is close enough to the identity, that is, A is close
to Ã, the sequence converges to the exact solution of the original problem.

We now examine a case where we need regularization to make the inverse problem uniquely
solvable. In particular, we still assume that both A and Ã are linear and both the data fidelity
and regularizer are given as quadratic functionals. This yields the sequence

(3.2) xk+1 = arg min
u∈X

{
1

2
‖Ãu− y + ε(xk)‖2Y +

λ

2
‖u‖2X

}
.
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Theorem 3.2 (Linear operators with Tikhonov regularization). Let both A : X → Y and
Ã : X → Y be linear, F (Ãu, y − ε(xk)) = 1

2‖Ãu − y + ε(xk)‖2Y , R(u) = 1
2‖u‖

2
X and T =

(Ã∗Ã + λI)−1Ã∗. Moreover, let the operator norm of T (A − Ã) be less than one. Then
sequence (2.6) converges to

x∗ =
(
I + T (A− Ã)

)−1
Ty.

Proof. In this case we have xk+1 = S(xk) = Ty − Tε(xk). Hence for x1, x2 ∈ X,

‖S(x1)− S(x2)‖X = ‖Tε(x1)− Tε(x2)‖X
= ‖TAx1 − TÃx1 − TAx2 + TÃx2‖X
= ‖T (A− Ã)(x1 − x2)‖X
≤ K‖x1 − x2‖X ,

(3.3)

where the Lipschitz constant K is the operator norm of T (A − Ã). Thus, by Banach fixed-
point theorem, S is a contraction and admits a unique fixed point. Let x∗ be a fixed point of
S. Then,

x∗ = Ty − T (A− Ã)x∗

⇐⇒ x∗ =
(
I + T (A− Ã)

)−1
Ty

(3.4)

Now the solution is the minimizer of the Tikhonov functional with the approximate operator
multiplied by a correction term (I +T (A− Ã))−1. Clearly the correction term is just identity
when A = Ã.

Let us make a few remarks. In the previous cases we required a linear operator to be
contractive. This can be verified for example through power method [13]. For nonlinear
operators it is harder to verify. However, there are three heuristics we can use to enforce
contractivity in that case as well.

(i) We note that in the linear cases the Lipschitz constant (largest singular value) depends
on A− Ã. The better the approximation is, the more likely the sequence converges.

(ii) In the Tikhonov regularized case, the Lipschitz constant depends on T , which in turn
depends on the regularization parameter λ. In particular, increasing λ decreases the
Lipschitz constant. This is because the singular values of Ã∗Ã + λI increase with λ,
while the singular values of (Ã∗Ã+ λI)−1 decrease with λ.

(iii) We can define a damped sequence as

(3.5) xk+1 = Sδ(xk) = δkS(xk) + (1− δk)xk,

where δ ∈ R and S is defined in (2.6). The damped sequence has the same fixed
point as the original sequence, if it exists. However, now the Lipschitz constant of the
update rule depends on δ. In theory, it is possible to find a value of δ that minimizes the
Lipschitz constant at the fixed point. This trick is used for example in the Babylonian
method for computing square roots [25]. Using this method requires knowledge of
the solution which is not available in practice. It is still possible to experiment with
different values and examine the sequence’s behaviour.
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In the nonlinear case with a general regularizer it is harder to make a general statement.
The Lipschitz properties of the minimization operator S depend on the properties of the
objective function. To ensure convergence in practice however, one could evaluate the original
objective function F (A(u), y) + λR(u) at each iterate xk and terminate the sequence when
the objective function can no longer be decreased.

3.2. Adaptive approximation. We may also let the approximation Ã depend on k, i.e.
we let the approximation Ãk change at every step of the sequence. Then the sequence is given
in general form as

(3.6) xk+1 = δk arg min
u∈X

{
F (Ãku, y − ε(xk)) + λR(u)

}
+ (1− δk)xk,

with step size δk. This case can not be analyzed with the fixed-point theory since the mapping
changes at each iteration. Here, one could consider a variety of approximations, but we will
specifically focus on the case where the approximation is given as a first-order Taylor expansion
centered at xk. In that case, Ãk is the Fréchet derivative of A evaluated at xk.

We note, that this choice for the adaptive approximation yields a sequence similar to the
successive linearized and regularized Gauss-Newton method, see [29, 47] for recent applica-
tions. Nevertheless, we emphasize that the successive linearized and regularized Gauss-Newton
method is a special case of the sequence formulation (3.6).

3.2.1. Approximation by Taylor expansion. Let us now consider local linear approxima-
tions by Taylor expansion. That is, the approximation is of the form Āx = A(x′)+J(x′)(x−x′),
where x′ ∈ X is given and J(x) is the Fréchet derivative of A evaluated at x. A convenient
choice is to choose x′ as the current element of the sequence, yielding

xk+1 = δk arg min
u∈X

{F (Jku, y −A(xk) + Jkxk) + λR(u)}+ (1− δk)xk

= δkSk(xk) + (1− δk)xk
= xk + δk(Sk(xk)− xk)
= xk + δkpk,

(3.7)

where we denote J(xk) = Jk for clarity. We write the sequence in this form to more easily
see the connection to iterative optimization algorithms such as gradient descent. Here, we
also assume that data fidelity functional is of the form F (a, b) = F (a− b), i.e., the mismatch
between the data and model output depends on the difference between the two. We note, that
this scheme is also related to surrogate approaches for nonconvex optimization, for instance
the majorization-minimization algorithm [26], which sequentially constructs surrogates that
majorize the nonconvex function and minimizes the surrogates. Likewise, the adaptive sequen-
tial method constructs a convex surrogate of the nonconvex function at xk. The difference is
that the surrogate does not necessarily majorize the non-convex function. These surrogates
are sequentially minimized, decreasing the value of the original nonconvex objective function
at each step. This is stated in the following theorem. For clarity of the presentation, we define
L(u) = F (A(u), y) + λR(u) and Lsk(u) = F (Jku, y −A(xk) + Jkxk) + λR(u).
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Figure 3.1: Illustration of the surrogate function Lsk that results from the local linear approx-
imation. We may be able to get past some local minima, as shown in the picture on the
left. The picture on the right shows that not controlling the step size might actually result in
increasing the function value.

Theorem 3.3 (Descend property). Let A : D(X)→ Y be a nonlinear operator, F : Y ×Y →
R+ a convex data fidelity term and R : X → R+ a convex regularization functional. Moreover,
let A, F and R be differentiable. Then for small enough δk ∈ (0, 1], the iterates of the sequence
(3.7) satisfy

L(xk+1) ≤ L(xk).

Proof. Since Jk is linear and F and R are convex, Lsk is convex. From the definition of
convexity, we have

Lsk(xk+1) = Lsk(δkSk(xk) + (1− δk)xk)
≤ δkLsk(Sk(xk)) + (1− δk)Lsk(xk)
= δk(L

s
k(Sk(xk))− Lsk(xk)) + Lsk(xk)

≤ Lsk(xk)

for all δk ∈ [0, 1], since Sk(xk) minimizes Lsk. From convexity also follows

〈∇Lsk(xk), xk+1 − xk〉X ≤ Lsk(xk+1)− Lsk(xk) ≤ 0.

It is left to verify that ∇L(xk) = ∇Lsk(xk). We have

∇Lsk(u) = J∗k∇F (Jku, y −A(xk) + Jkxk) + λ∇R(u).

Evaluating the gradient at xk gives

∇Lsk(xk) = J∗k∇F (Jkxk, y −A(xk) + Jkxk) + λ∇R(xk)

= J∗k∇F (Jkxk − y +A(xk)− Jkxk) + λ∇R(xk)

= J∗k∇F (A(xk)− y) + λ∇R(xk)

= J∗k∇F (A(xk), y) + λ∇R(xk)

= ∇L(xk),
9



which means

〈∇Lsk(xk), xk+1 − xk〉X = 〈∇L(xk), xk+1 − xk〉X ≤ 0.

Hence by Taylor’s theorem

L(xk+1) = L(xk + δkpk) = L(xk) + 〈∇L(xk), δkpk〉X +O(δ2k).

Since the remainder depends on δk at least quadratically, we can always find small enough δk
such that 〈∇L(xk), δkpk〉X +O(δ2k) = 〈∇L(xk), xk+1 − xk〉X +O(δ2k) ≤ 0, which finally gives
L(xk+1) ≤ L(xk).

We emphasize that the approximative model for the sequence (3.6), does not necessarily
need to be the Fréchet derivative of the exact model. It only needs to be chosen such that
the value and gradient of the surrogate at the current iterate matches those of the nonconvex
functional.

3.2.2. Convergence to a critical point. In this section we follow [5] and hence consider the
finite dimensional case Y = Rn and X = Rm. The descent property itself does not guarantee
that the sequence converges to a local minimizer or even a critical point of the nonconvex
functional. In general, it is possible for the sequence to have multiple limit points [1]. Thus it is
necessary to consider functions that possess certain structure. In the nonconvex optimization
literature the Kurdyka- Lojasiewicz (KL) property is often exploited to prove convergence
results (see [5] for the definition), as it is a general property satisfied by many classes of
functions. It is used to prove that the trajectory defined by the sequence has finite length.

In the following we assume that the functional L satisfies the KL-property and has K-
Lipschitz gradient. For the sequence to converge to a critical point, the following conditions
need to hold:

(i) 〈∇L(xk), xk+1 − xk〉X + a
2‖xk+1 − xk‖2X ≤ 0,

(ii) ‖∇L(xk)‖X ≤ b‖xk+1 − xk‖X ,
(iii) There exists a subsequence (xkj )j∈N and x∗ ∈ X such that xkj → x∗ and L(xkj ) →

L(x∗) as j →∞,

for some positive a and b such that a > K. In [5] (pages 106–107), fulfilling these conditions
is shown to result in convergence to a critical point. The following theorem shows what
assumptions are needed for the conditions to hold.

Theorem 3.4. Let A : D(X) ⊂ X → Y be a nonlinear operator, F : Y × Y → R+ a convex
data fidelity term and R : X → R+ a convex regularization functional. Furthermore, let A,
F and R be chosen such that Lsk is m-strongly convex with Ks-Lipschitz gradient and that L
has a K-Lipschitz gradient such that m > K. Let L satisfy the Kurdyka- Lojasiewicz property.
Then for any bounded sequence (xk)k∈N generated by Eq. (3.7), conditions (i), (ii) and (iii)
hold.

Proof. (i): Since Lsk is m-strongly convex, we have

〈∇Lsk(xk), xk+1 − xk〉X ≤ Lsk(xk+1)− Lsk(xk)−
m

2
‖xk+1 − xk‖2X .
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We know from Theorem 3.3 that Lsk(xk+1) − Lsk(xk) ≤ 0 and ∇Lsk(xk) = ∇L(xk). Thus we
conclude that

〈∇L(xk), xk+1 − xk〉X +
m

2
‖xk+1 − xk‖2X ≤ 0.

(ii): We estimate

‖∇L(xk)‖X = ‖∇Lsk(xk)‖X
= ‖∇Lsk(xk)−∇Lsk(Sk(xk))‖X (∇Lsk(Sk(xk)) = 0)

= ‖∇Lsk(xk)−∇Lsk(δ−1k (xk+1 − xk) + xk)‖X (Rearrange (3.7))

≤ Ks‖xk − (δ−1k (xk+1 − xk) + xk)‖X (Lipschitz gradient)

= Ks‖δ−1k (xk − xk+1)‖X

=
Ks

δk
‖xk+1 − xk‖X

(iii): This condition follows from the continuity of L and boundedness of the sequence
(xk)k∈N.

Remark 3.5. For the convergence proof in [5] it is required that the strong convexity con-
stant m of the surrogate functional is larger than the Lipschitz constant K of the gradient of
the nonconvex functional. Our formulation of the sequence (3.6) does not guarantee this. How-
ever, when the data fidelity is given by the squared `2-norm, the surrogate functional can always
be ”squeezed” to increase the constant. We only need to make sure that ∇Lsk(xk) = ∇L(xk).

Figure 3.1 illustrates the convex surrogate obtained with the local linear approximation. It
might let us escape some local minima. However, taking too long steps may end up increasing
the value of the function we try to minimize. The optimal step size can be chosen for example
by line search, that is, we choose such δ that minimizes the objective function:

(3.8) δk = arg min
δ∗∈[0,1]

L(δ∗ arg min
u∈X

{Lsk(u)}+ (1− δ∗)xk)

3.2.3. Connection to the Gauss-Newton method. The Gauss-Newton method was orig-
inally designed for solving nonlinear least-squares problems [34]. It is an iterative optimization
method involving linearization of the nonlinear model at every iterate. In inverse problems,
it is most often used to solve variational problems of the form

(3.9) x∗ = arg min
u∈X

{
1

2
‖A(u)− y‖2Y + λR(u)

}
,

where R must be twice continuously differentiable. The updating step is given as [34,40]

(3.10) xk+1 = xk + δk(J
∗
kJk + λ∇2Rk)

−1[J∗k (y −A(xk))− λ∇Rk],

where Jk is the Fréchet derivative of A evaluated at xk, ∇Rk is the gradient and ∇2Rk is the
second derivative of R evaluated at xk and δk is a step size chosen with line search. It turns out
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that with certain choices the adaptive sequential method is equivalent to the Gauss-Newton
algorithm. In particular, we have to always choose F as the L2 norm. Then, if we choose
R = 0, requiring that J∗kJk is invertible, the adaptive sequential update becomes

xk+1 = δk(J
∗
kJk)

−1J∗k (y −A(xk) + Jkxk) + (1− δk)xk
= xk + δk(J

∗
kJk)

−1J∗k (y −A(xk)),
(3.11)

which is exactly the same as Gauss-Newton update. Further, if we choose R(u) = 1
2‖u‖

2
X , the

adaptive sequential update is

(3.12) xk+1 = δk(J
∗
kJk + λI)−1J∗k (y −A(xk) + Jkxk) + (1− δk)xk.

The connection to Gauss-Newton is a bit more tricky to see here. The Gauss-Newton update
can be written as

xk+1 = xk + δk(J
∗
kJk + λI)−1[J∗k (y −A(xk))− λxk]

= (I − λδk(J∗kJk + λI)−1)xk + δk(J
∗
kJk + λI)−1J∗k (y −A(xk))

= (1− δk)xk + δkJ
∗
k (JkJ

∗
k + λI)−1Jkxk + δk(J

∗
kJk + λI)−1J∗k (y −A(xk))

= (1− δk)xk + δk(J
∗
kJk + λI)−1J∗kJkxk + δk(J

∗
kJk + λI)−1J∗k (y −A(xk))

= δk(J
∗
kJk + λI)−1J∗k (y −A(xk) + Jkxk) + (1− δk)xk,

(3.13)

which is the same as the adaptive sequential update in (3.12). The third row in the above
equation follows by Woodbury formula [15]

(3.14) (J∗kJk + λI)−1 = λ−1I − λ−2J∗k (I + λ−1JkJ
∗
k )−1Jk

and the fourth row by push-through identity [18]

(3.15) J∗k (JkJ
∗
k + λI)−1 = (J∗kJk + λI)−1J∗k .

In general, the adaptive sequential method and Gauss-Newton algorithm are the same for
quadratic objective functions. The reason for this is that one step of Gauss-Newton is enough
to minimize a quadratic function.

3.3. Non-differentiable case. In the previous section we required the data fidelity F and
regularization term R to be continuously differentiable functions. However, in principle, the
sequential formulation allows the use of any data fidelity and regularization term. In practice,
and as we will show in the experiments, we observe good performance for non-differentiable
L1 data fidelity and total variation (TV) regularization. This implies that the theory could
be modified to allow for non-differentiable objective functions and possibly non-convex data
fidelity or regularizer. As these are not the focus of this study, we leave the analysis of other
cases for future studies.
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Figure 3.2: Illustration of how the operators considered in this work distort the ground truth
image (top). Nonlinear diffusion (NLD) (bottom left), curvature flow (CF) (bottom middle)
and linear diffusion (LD) (bottom right).

4. Models and implementation. We test the sequential correction method with diffusion-
type operators that have been extensively used in imaging. A general diffusion operator
A : x0 7→ xT on Rd for a fixed time interval (0, T ] is defined by the partial differential equation

(4.1)

{
∂tx = ∇ · (γ(x)∇x)

x = x0 when t = 0,

for diffusivity γ. If we let γ = 1, the operator becomes linear and the model corresponds to
convolution with a Gaussian kernel. We can also consider a model with varying diffusivity.
One possibility is to use the Perona-Malik filter such that γ(x) = (1 + |∇x|2/κ2)−1, where
κ > 0 is a contrast parameter [36]. Numerically the operator can be implemented by explicit
iterative time-stepping algorithm. Starting from initial value x0, the k-th iteration is defined
as

(4.2) xk+1 = xk + δt∇ · γ(xk)∇xk,

with step size δt. We also consider a related curvature flow operator. On Rd and fixed time
interval (0, T ] the operator is defined as [49]

(4.3)

{
∂tx = |∇x|∇ ·

(
∇x
|∇x|

)
x = x0 when t = 0.
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Similarly as with the diffusion operator, the curvature flow operator can be numerically im-
plemented with iterative time-stepping algorithm

(4.4) xk+1 = xk + δt(|∇x|+ ψ)∇ ·
(

∇xk
|∇xk|+ ψ

)
with step size δt and threshold ψ for differentiability and stability by avoiding division with
a number too close to zero. The models are referred to as NLD, CF and LD, for nonlinear
diffusion, curvature flow and linear diffusion, respectively. Figure 3.2 illustrates the effect of
the three models when applied on an image.

4.1. Numerical experiments. We used the developed sequential model correction method
to restore images distorted by the nonlinear diffusion and curvature flow operators. For the
fixed method we used a linear diffusion operator (constant diffusivity) to approximate the
nonlinear operators in both cases. For the adaptive method we used the first-order Taylor
expansion centered at the current iterate as an approximation. We set the contrast parameter
in Perona-Malik filter to κ = 0.1 and the threshold parameter in the curvature flow model
to ψ = 0.001. The step size δt was set to 0.1 and number of steps to 15 in all time-stepping
algorithms. Either 3 % of Gaussian noise or 4 % of impulse noise was added to the distorted
image. We numerically evaluated the reconstruction quality over a batch of 32 images, mea-
suring the correspondence to ground truth images using peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM) [48]. We also investigated empirically the
convergence of the methods by computing the value of the data fidelity at each iteration of
the sequence.

We compared our methods to the case where the approximation error was not dealt with,
i.e., the reconstruction was computed using only the approximate model. We also compared
our methods to AEM, where the approximation error is assumed to have a Gaussian distribu-
tion. The evaluation was done separately for the nonlinear diffusion and curvature flow models
with Gaussian and impulse (salt and pepper) noise which assigns random pixels a value zero
or one [14]. For the Gaussian noise case we assumed squared L2 data fidelity and for the
impulse noise case we assumed L1 data fidelity. In all experiments we used TV regularization
which penalizes the absolute value of the image gradient, favoring piecewise constant recon-
structions [37]. The regularization parameter was chosen separately for different methods by
computing reconstructions for a test image with different values of λ and selecting the value
that yielded the highest SSIM.

4.2. Implementation. The algorithms for sequential model correction and AEM were im-
plemented with Python. The algorithm for sequential model correction with squared L2- or
L1-data fidelity and TV regularization is presented in Algorithm 4.1. The subproblems re-
quiring convex optimization were solved with primal-dual methods [11, 42]. The Jacobians
for local linear approximations were computed via Jacobian-vector and vector-Jacobian prod-
ucts using the autograd library in Pytorch [35]. The computations were performed with a
workstation with two 2.20 GHz processors and Nvidia Quadro P4000 GPU.

4.3. Data. For testing our methods we used the FFHQ dataset [21]. The dataset consists
of 70000 color images of aligned and cropped faces of size 10242. The data was preprocessed by
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Algorithm 4.1 Sequential model correction with primal-dual method for L2/L1 data fidelity
and TV regularization

1: Require x0, λ
2: u0 ← x0, ū0 ← x0, p0 ← 0, q0 ← 0, k ← 0, θ ← 1
3: while sequence not converged do
4: Kk ← ‖(Ãk,∇)‖op
5: τk ← 1/Kk

6: σk ← 1/Kk

7: ε(xk) = A(xk)− Ãxk
8: t← 0
9: while primal-dual not converged do

10: rt+1 = Ãkūt − y + ε(xk)
11: pt+1 ← (pt + σkrt+1)/(1 + σk) . L2

12: pt+1 ← (pt + σkrt+1)/max(1Y , |pt + σkrt+1|) . L1

13: qt+1 ← λ(qt + σk∇ūt)/max(λ1X , |qt + σk∇ūt|)
14: ut+1 ← ut − τkÃ∗kpt+1 + τkdiv(qt+1)
15: ūt+1 ← ut+1 + θ(ut+1 − ut)
16: t← t+ 1
17: end while
18: Perform line search to find δk
19: xk+1 ← (1− δk)ūt + δkxk
20: k ← k + 1
21: ū0 ← ūt, u0 ← ut, p0 ← pt, q0 ← qt
22: end while
23: return xk

NLD (Gaussian) NLD (Impulse)
PSNR SSIM PSNR SSIM

No correction 26.96 (2.58) 0.87 (0.039) 24.58 (2.61) 0.87 (0.042)
Fixed seq. 28.48 (2.25) 0.88 (0.037) 30.05 (2.53) 0.93 (0.022)

Adaptive seq. 29.32 (1.72) 0.89 (0.031) 29.62 (2.08) 0.93 (0.020)
AEM 27.11 (2.17) 0.85 (0.048) - -
Data 27.40 (0.92) 0.80 (0.020) 18.77 (0.27) 0.48 (0.033)

Table 5.1: Average (standard deviation) peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) over reconstructions of 32 images distorted by the nonlinear
diffusion operator. The results are presented separately for Gaussian noise and impulse noise.

converting the images to grayscale and downsampling to size 2562 to make the computations
feasible. The dataset was also used to compute the mean vector and covariance matrix of the
approximation error required by AEM.
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CF (Gaussian) CF (Impulse)
PSNR SSIM PSNR SSIM

No correction 27.39 (2.38) 0.87 (0.042) 26.21 (2.32) 0.88 (0.038)
Fixed seq. 28.01 (2.36) 0.88 (0.042) 29.97 (2.43) 0.93 (0.025)

Adaptive seq. 28.18 (2.26) 0.88 (0.040) 30.46 (2.86) 0.93 (0.029)
AEM 26.42 (2.04) 0.85 (0.046) - -
Data 26.08 (1.65) 0.77 (0.027) 18.48 (0.46) 0.46 (0.024)

Table 5.2: Average (standard deviation) peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) over reconstructions of 32 images distorted by the curvature
flow operator. The results are presented separately for Gaussian noise and impulse noise.

Time in seconds
NLD (Gaussian) NLD (Impulse) CF (Gaussian) CF (Impulse)

No correction 10.84 (2.04) 28.06 (5.57) 9.05 (1.26) 26.35 (4.70)
Fixed seq. 18.36 (4.56) 230.24 (71.47) 13.74 (3.02) 123.27 (32.47)

Adaptive seq. 153.75 (84.22) 373.76 (123.52) 71.58 (15.76) 301.29 (84.81)
AEM 91.51 (15.43) - 237.48 (26.98) -

Table 5.3: Average computation times (standard deviations) of different methods over 32
images.

5. Results. We start by examining the quantitative results. Tables 5.1 and 5.2 show the
averaged PSNR and SSIM for reconstructions over a batch of 32 images with the NLD and CF
models, respectively. The general trend is clear: using the fixed sequential correction method
gives a clear improvement compared to not correcting the model at all. With NLD model
and Gaussian noise the difference in PSNR is about 1.5 dB and 0.01 in SSIM. The difference
with impulse noise is even more pronounced with about 5.5 dB in PSNR and 0.06 in SSIM.
With NLD model and Gaussian noise the adaptive method gives a slight improvement over
the fixed method. Interestingly, for impulse noise the effect is the opposite, a matter we
discuss in Section 5.1. For the CF model the difference between fixed and adaptive methods
is negligible. The performance of AEM is slightly lower than using no correction with both
models.

We then take a qualitative look at the reconstructed images. Figure 5.1 shows reconstruc-
tions with different correction methods for the NLD model approximated with a LD model
with Gaussian noise. Without any correction the edges in the image are oversharpened since
the LD model assumes higher diffusivity over the edges. The adaptive method is able to
recover a bit more details than the fixed method, for example in the earring. Qualitatively
the reconstruction with AEM is quite close to the reconstruction with fixed approximation,
and at some parts a bit more blurry. Figure 5.2 shows the same reconstructions for the CF
model. Here the difference between fixed and adaptive methods is not so clear. The AEM
reconstruction is clearly the worst with the eyes not properly recovered. Reconstructions for
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Figure 5.1: Reconstructions for the nonlinear diffusion model approximated with linear diffu-
sion model with 3% Gaussian noise. The numbers in parentheses indicate peak signal to noise
ratio (dB) and structural similarity index measure.

the NLD model and impulse noise are shown in Figure 5.3. Here, correcting the model greatly
increases the ability to separate details in the image. The fixed correction creates some wavy
artefacts near the edges. The adaptive correction takes care of the artefacts and the text on
the hat is more clearly visible. However, there is still some noise left in some parts of the
image. We will discuss this phenomenon in Section 5.1. Figure 5.4 shows the reconstructions
with CF model and impulse noise. Again, correcting the model increases the amount of de-
tails in the image. Again, the fixed correction introduces some artefacts at the edges while
the adaptive correction takes care of the artefacts.

Finally, we investigate the convergence of the sequences. Figures 5.6 and 5.5 show the
evolution of the data fidelity F (A(u), y) with respect to true model over sequence iterations.
The behavior is as expected: the adaptive method converges to a lower value than the fixed
method, experimentally confirming the analysis of Theorem 3.3, which stated that taking
small enough steps in the sequence with adaptive approximation ends up decreasing the value
of the objective function with respect to the true model. Furthermore, with the NLD model,
the reconstructions with AEM obtain a slightly higher value of the data fidelity than with
fixed approximation, while not using any correction gives the highest value. For the CF model
the order of AEM and no correction is reversed. We can see from Table 5.3 that the fixed cor-
rection method offers a compromise between reconstruction quality and computational effort,
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Figure 5.2: Reconstructions for the curvature flow model approximated with linear diffusion
model with 3% Gaussian noise. The numbers in parentheses indicate peak signal to noise
ratio (dB) and structural similarity index measure.

compared to the adaptive method. The computation time is about one order of magnitude
lower with the NLD model and Gaussian noise. The difference is less drastic with other models
and noise types, due to slower convergence of the linear problem.

5.1. Discussion of results. With the NLD model and impulse noise, the fixed method
gives quantitatively better results than the adaptive method. This is mainly due to the noise
left in the reconstruction (see Figure 5.3). While increasing the regularization parameter could
get rid of the noise, the quality of the image would deteriorate in other locations, resulting in
oversmoothing. A possible fix could be to consider other kinds of data fidelity models, such
as Cauchy noise model [41]. It penalises outliers even less than the L1 data fidelity which is
based on the Laplace distribution. As we consider only convex data fidelity terms, we leave
the Cauchy model to future studies as it is non-convex.

The computation time differences between fixed and adaptive methods are less pronounced
for L1 data fidelity, especially with the NLD model. A possible reason could be the slower con-
vergence of the fixed method which converges in 15–20 iterations while the adaptive method
converges in about 10–15 iterations on average. Another reason for the relative small differ-
ences in computation time is the efficiency of the computation of the Jacobian that comes
from the autograd library in PyTorch utilizing GPU parallelization.

As discussed earlier, AEM is based on the Gaussianity assumption of the approximation
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Figure 5.3: Reconstructions for the nonlinear diffusion model approximated with linear diffu-
sion model with 4% salt and pepper noise. The numbers in parentheses indicate peak signal
to noise ratio (dB) and structural similarity index measure.

error. Figure 5.7 illustrates some of the pairwise distributions of the approximation error
between the models used in this work. All in all, the distributions seem very non-Gaussian,
with star-like shapes and outliers quite far from the center of the distribution. Even though
the distribution is not Gaussian, the reconstructions with AEM with the NLD model achieve
on average lower value of the data fidelity than not using any correction at all. It could be
that the approximation error consists of multiple components of which some are Gaussian.
AEM learns that part and leaves the rest of the error to be modeled as noise. We note that
there exist also hierarchical constructions of the AEM, namely where the unknown is modeled
as conditionally Gaussian (see e.g., [9]). Hierarchical modeling of Gaussian variables brings
some flexibility and adaptiveness to model and can help in recovering non-Gaussian structures.
We note that recently proposed neural network-based correction methods are also capable of
correcting non-Gaussian errors but require training data to use [28,43].

5.2. Comparison to other optimization techniques. Adaptively approximating the non-
linear model with Taylor expansion revealed connections between model correction and op-
timization. With certain smoothness assumptions for the model and objective function, we
proved that the sequence with adaptive approximation always decreases the objective func-
tion with respect to the exact model. We also showed that with quadratic objective functions
the adaptive sequence corresponds to the classic Gauss-Newton method. As Gauss-Newton
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Figure 5.4: Reconstructions for the curvature flow model approximated with linear diffusion
model with 4% salt and pepper noise. The numbers in parentheses indicate peak signal to
noise ratio (dB) and structural similarity index measure.

(a) (b)

Figure 5.5: Average of the L2 data fidelity over reconstructions of 32 images with Gaussian
noise for (a) nonlinear diffusion and (b) curvature flow models.
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(a) (b)

Figure 5.6: Average of the L1 data fidelity over reconstructions of 32 images with impulse
noise for (a) nonlinear diffusion and (b) curvature flow models.

assumes that the data fidelity term is given by the L2-norm, our approach is slightly more
general than it.

The adaptive sequential correction method is also closely related to the majorization-
minimization (MM) framework [19]. In both methods, a convex surrogate of the original
nonconvex function is constructed about the current iterate, and the surrogates are sequen-
tially minimized. In MM, the surrogate is a majorizer, i.e., it is larger than the original
function for every input, while this is not necessarily the case for our method. Furthermore,
MM framework requires constructing the surrogate for each application separately and there
are different methods for constructing it, whereas for our sequential method the surrogate
follows naturally from the linearization of the model. However, MM is slightly more general
than our method as we require convexity of the data fidelity and regularizer.

Trust-region methods are also related to our method [22]. They are sequential optimization
methods that specify a ball of radius ∆ (trust-region) about the current iterate. In the trust-
region, the objective function is approximated with a quadratic function that agrees with
the objective function up to the first derivative. The quadratic function is approximately
minimized and either the minimizer is chosen as the next iterate or the radius of trust-region
is reduced. The difference to our method is that the surrogate specified by the linearization
is not necessarily quadratic.

Recent works have focused on extending the theory of primal-dual methods to allow non-
linear operators [12, 46]. They are closely related to our work as they use different kinds of
linearizations to convexify the problem. However, their approach is to modify the existing
primal-dual algorithms for convex optimization to deal with the nonlinearity. This is fun-
damentally different to our method as we sequentially update the nonlinear term and use
convex optimization to solve the sub-problem. Furthermore, our approach is not limited to
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(a)

(b)

Figure 5.7: Scatterplots of some elements of the approximation error between (a) nonlinear and
linear diffusion and (b) curvature flow and linear diffusion operators. These figures highlight
non-Gaussianity in the approximation error and thus the need for a non-Gaussian correction.

primal-dual methods, any algorithm for convex optimization works.

6. Conclusion. In this work we have proposed a strategy for correcting nonlinear models
in the variational framework. We started from the observation that the conventional method
for model correction that assumes a Gaussian distribution for the approximation error is not
suitable for correcting non-Gaussian errors. These kind of errors arise especially when trying
to correct nonlinear models with a linear approximation, as discussed in Section 2.1. The
proposed strategy involves finding a linear approximation of the nonlinear model and solving
the arising convex variational problem using the linear model. Updating the approximation
error at the solution of the variational problem, the process is repeated until convergence. We
investigated two different kinds of approximation, fixed and adaptive. The fixed approximation
does not depend on the iteration number, making it computationally and conceptually simple
to use, only requiring a few evaluations of the accurate nonlinear model. The sequence with
the fixed approximation can be thought of as a fixed-point iteration, with simple conditions
telling whether the sequence converges or not. Unfortunately, in practice it is rather difficult to
tell if the conditions are fulfilled. Another possibility to ensure convergence is to terminate the
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sequence when the objective function with the exact operator can no longer be decreased. This
involves evaluations of the correct model and might not be feasible if one evaluation is time
consuming. In the case where the approximation is adaptive, we were able to draw connections
between model correction and optimization literature. Specifically, if the approximation is
chosen as a Taylor expansion, the adaptive sequence can be seen as an optimization method.

The connection to Gauss-Newton and MM methods could inspire further research to es-
tablish connections between model correction and nonlinear optimization. In many cases it is
computationally prohibitive to differentiate a nonlinear operator. Here, other approximations
that satisfy the convergence criterion of Theorem 3.3 would be of further interest for future
studies. Additionally, computationally cheap approximations of the derivative could be of
interest, for instance by (learned) Quasi-Newton methods [44].

Finally, we will consider the application of the sequential approximation for the use with
other nonlinear PDE based inverse problems [30,38]. Here, we believe that the fixed approxi-
mation without the need to differentiate the model could be of great computational advantage.
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