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Prediction of complex traits based on genome-wide marker information is of central

importance for both animal and plant breeding. Numerous models have been proposed

for the prediction of complex traits and still considerable effort has been given to improve

the prediction accuracy of these models, because various genetics factors like additive,

dominance and epistasis effects can influence of the prediction accuracy of suchmodels.

Recently machine learning (ML) methods have been widely applied for prediction in

both animal and plant breeding programs. In this study, we propose a new algorithm

for genomic prediction which is based on neural networks, but incorporates classical

elements of LASSO. Our new method is able to account for the local epistasis (higher

order interaction between the neighboring markers) in the prediction. We compare

the prediction accuracy of our new method with the most commonly used prediction

methods, such as BayesA, BayesB, Bayesian Lasso (BL), genomic BLUP and Elastic

Net (EN) using the heterogenous stock mouse and rice field data sets.

Keywords: neural networks, LASSO, local epistasis, genomic selection, whole genome prediction

INTRODUCTION

The introduction of Genomic Selection (GS) (Meuwissen et al., 2001) along with the availability
of low cost genotyping platforms has resulted in a major paradigm shift in both animal and plant
breeding. Since then, GS has been successfully applied for efficient selection and accelerating the
breeding process in various breeding programs (Spindel et al., 2015; Garner et al., 2016; Hickey
et al., 2017; Voss-Fels et al., 2019). Even though GS has now been widely implemented in practice,
still considerable effort has been given to improve the prediction accuracy in GS beyond the current
limits. Various factors can affect the prediction accuracy in GS includingmarker density, heritability
of the trait, population size, constitution of the learning population and the statistical model used
to predict the genomic breeding values (Meuwissen, 2009; Liu et al., 2018; Norman et al., 2018).
Recently many studies tried to incorporated the transcriptome data (Li et al., 2019; Azodi et al.,
2020) into genomic prediction models, in order to improve the prediction accuracy in GS.

The genomic prediction models can be divided roughly into two classes: (1) genomic best linear
unbiased prediction (GBLUP) based on linear mixed models and (2) the whole-genome regression
(WGR) based on multilocus regression models. In the first approach, the genetic background of
the trait is assumed to be polygenic while in the latter, more oligogenic genetic background is
assumed. Again in the first, molecular markers are used to construct the genomic relationship
matrix while in the latter, molecular markers represent considered set of regression variables in
the model. However, note that WGR model can be written also as the GBLUP model with a
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trait-specific relationship matrix having own variance
component for each SNP in the diagonal (Zhang et al.,
2010; Piepho et al., 2012; Resende et al., 2012; Shen et al., 2013).

Epistasis (genetic interaction) is one of the major reason
for the non-linearity in the genotype-phenotype relationship
and considerable efforts have been given to model epistasis
in genomic prediction models (Hu et al., 2011; Wittenburg
et al., 2011; Wang et al., 2012; Jiang and Reif, 2015). Recently,
many studies even pointed out the importance of local epistasis
(interactions that span short segments of the genome) (Wei
et al., 2014; Akdemir and Jannink, 2015; Akdemir et al.,
2017; He et al., 2017; Liang et al., 2020). Although it is
well known that epistasis (both local and global) interactions
contribute to many complex traits (Taylor and Ehrenreich,
2014, 2015; Albert and Kruglyak, 2015), most of the genomic
prediction models account for the pair-wise interactions due
to the computational complexity of screening through all
possible combinations.

Most of the WGR models used in GS are based on linear
regression procedure and have been successfully adopted to
predict complex phenotype in plant and animal breeding
programs (Meuwissen et al., 2001; Park and Casella, 2008;
Mathew et al., 2019). Nonlinear extensions of these methods
with dominance and epistasis has been also considered (Nishio
and Satoh, 2014; Jiang and Reif, 2015; Varona et al., 2018;
Olatoye et al., 2019). However, recent development in the
field of machine learning enable us to use profound nonlinear
methods for the prediction of complex traits in breeding. Among
the machine learning methods, deep learning (DL) methods
received much attention due to their outstanding prediction
properties (LeCun et al., 2015). Although improved accuracy
can be questioned, many recent studies successfully applied
deep learning for various genomic problems (Uppu et al.,
2016; Bellot et al., 2018; Montesinos-López et al., 2018, 2019;
Crossa et al., 2019; Liu et al., 2019; Pérez-Enciso and Zingaretti,
2019).

Often these learning methods are applied in a black-
box manner and standard architectures that worked well in
disciplines like natural language processing and computer vision
are transferred to genomic prediction. Even though results
are encouraging, interpretability remains an issue (Waldmann,
2018). However, as an exception, there is a study presenting
an interpretable neural network model (see Zhao et al., 2021).
Also, in this study we propose to design a domain specific
learning system that is motivated by neural networks, but
incorporates classical elements of lasso. The resulting algorithm
is termed NeuralLasso, that is capable of incorporating higher
order nonlinear interactions between contributingmarkers in the
local neighborhood. Unlike the method of Zhao et al. (2021),
our non-Bayesian approach is focusing on modeling high-
order local interactions. In the terminology of neural networks,
predictions are performed in a single layer and ℓ1 sparsity on
the learned parameters is incorporated, hence the relation to
classical lasso models. We compare the prediction accuracy of
NeuralLasso with the most commonly used GP methods such as
BayesA, BayesB, BL, GBLUP, and EN using the mouse and rice
data sets.

MODELS AND METHODS

Whole Genome Regression Model
Let us consider a standard genomic prediction model

y = Xβ + Zw+ ǫ. (1)

Here, y is a vector of observed phenotypes for n lines, β contains
the fixed effects, X represents the incidence matrix for the fixed
effects, Z = Zi1,Zi2, ...Zip is the n×p (p is the number of markers)
matrix for the genotypes coded as 0,1,2, w = (w1,w2....wp)
is a column vector of marker effects and ǫ corresponds to the
residual, following a normal distribution as ǫ ∼ N(0, Iσ 2

e ). For
simplicity, here we assume no fixed effects other than overall
mean (note that it is possible to pre-correct fixed effects away
from the phenotype before neural network analysis).

The number of markers usually exceeds the number of
observations in genomic prediction problems and regularization
is applied in order to obtain solution to Equation (1). A
regularized regression function can be formulated as

β̂ , ŵ = argmin
β ,w





n
∑

i=1

(yi − Xβ −

p
∑

j=1

Zijwj)
2 + P(λ,w)



 . (2)

Here, the function P(λ,w) is the penalty function with
regularization parameter λ ≥ 0. Least absolute shrinkage and
selection operator (lasso) (Tibshirani, 1996) based on the penalty
term called ℓ1-norm, which is the sum of the absolute coefficients
and Ridge Regression based on the ℓ2-norm penalty which
the sum of squared coefficients are the most commonly used
regularized regression methods. The EN method which is a
compromise between lasso and ridge regression penalties can be
represented as:

β̂ , ŵ = argmin
β ,w

{

n
∑

i=1

(yi − Xβ −

p
∑

j=1

Zijwj)
2 + λ

p
∑

j=1

[

1

2
(1− α)w2

j + α|wj|

]

}

(3)

where 0 ≤ α ≤ 1 is the penalty weight. The EN penalty is
controlled by α and when α = 1 EN is identical to lasso, whereas
EN is equivalent to ridge regression when α = 0.

NeuralLasso
We design our model based on the underlying Equation (1). That
is, given the genotypes in Z, instead of finding the matrix w
we seek to find a parametrizable (nonlinear) mapping 3θ , with
parameters θ , such that

3θ (Z) = y. (4)

The question is how to construct such a mapping 3θ and
what do the parameters of θ represent. In the following we
aim to derive a model, that is motivated by neural networks,
but follows the classical architecture of lasso as presented in
Equation (3). For this purpose, we will shortly review classic
neural network architectures.
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Background on Neural Networks

The underlying premise of a neural network is to combine
affine linear mappings and pointwise nonlinearities to construct a
nonlinear mapping in a repeating multi-layered fashion (LeCun
et al., 2015; Schmidhuber, 2015; Goodfellow et al., 2016). In its
most general form we can write the main building block of a
neural network for an input z ∈ R

n (genotypes) and output
y ∈ R

m (phenotype) as

y = ϕ(Cz + b), (5)

where C ∈ R
m×n is a linear transformation matrix, b ∈ R

m

an additive affine component, the so-called bias, and finally
ϕ(·) a point-wise acting nonlinear function. A popular choice
for this nonlinear function is given by the rectified linear unit
ReLU(x) : = max(x, 0). A multi-layered neural network would be
now given as a repeated composition the blocks in Equation (5),
where each block is called one layer. Nevertheless, in this work
we concentrate on so-called shallow networks that consist only
of one layer. The specific network architecture is now defined by
the structure of the affine linear transformation C. The obvious
choice of a dense matrix C is called a fully connected layer, as
each data point in the input vector is related with each point
in the output vector. Such a fully connected layer learns specific
weights for each location in the input and hence is locally varying.
Another option for the choice of linear mapping would be given
by convolutions, if represented as matrices this would result in
a sparse representation. Sparse representations are desirable, as
they can be implemented efficiently and reduce the amount of
parameters significantly. Nevertheless, the choice of convolutions
as linear transformation is not optimal in our setting, as these are
translationally invariant and hence do not encode any locality. In
the following, we aim to design a transformation that is sparse,
but does also encode locality to combine the strength of both.

Formulating NeuralLasso
The first important part is to define the underlying
transformation given as the matrix C for our proposed model
is based on the requirement to encode locality, while taking
neighborhood relationships into account. For this purpose, we
follow (Arridge and Hauptmann, 2019) and define a sparse
subdiagonal matrix C ∈ R

p×p, where p is the number of markers,
and a neighborhood of size N, such that the main diagonal and
the N subdiagonals below and above are non-zero. That is for
N = 0 we simply have a diagonal matrix and for N = 1 we have
a tridiagonal matrix such as

C =















c0,1 c1,1
c−1,2 c0,2 c1,2

. . .
. . .

. . .

c−1,n−1 c0,n−1 c1,n−1

c−1,n c0,n















. (6)

Given the matrix C we could formulate a lasso problem
that takes interactions in the local neighborhood into account

by minimizing

Ĉ = argmin
C

n
∑

i=1



yi −

p
∑

j=1

(CZT
i )j





2

+ λ

N
∑

j=−N

p
∑

i=1

|cj,i|. (7)

Note, that for N = 0 no neighborhood relation is taken
into account and the model reduces to the basic lasso scheme
similar to Equation (3). As the above model in Equation (7)
only considers linear interactions in the local neighborhood, we
want to combine this sparse subdiagonal matrix with classical
elements of neural networks, i.e., nonlinear activation functions
and additional bias vectors to allow for nonlinear interactions, as
outlined previously.

The Proposed Model for Local Epistatic Interactions

We will now consider the building block of a neural network
as in Equation (5) for one layer, but consider multiplication
with the subdiagonals of C separately to introduce nonlinear
effects between neighboring loci. In the following, we will
fix the neighborhood to N = 2, that is a neighborhood
window of 5 loci. We will model the nonlinear interaction by
a maximum thresholding using ReLU for the 3 central loci and
no nonlinearity for the outer two loci. This way we enforce an
interaction effect of the 5-neighborhood. Given the (sub)diagonal
vectors ci ∈ R

p for i = −2, . . . , 2 the non-linear parametrized
model can be formulated as

3C(Zj) =

2
∑

n=−2

p
∑

i=1

ϕi(cn,izi+n + bn,i), (8)

where zi = 0 for i < 1 or i > p, and ϕi(x) = ReLU(x) =

max(x, 0) for i = −1, 0, 1 and ϕi(x) = x otherwise. That is, if
we write all terms down we get

3C(Zj) =

p
∑

i=1

(c−2,izi−2 + b−2,i)+ (c2,izi+2 + b2,i)

+ReLU(c−1,izi−1 + b−1,i)+ ReLU(c0,izi + b0,i)

+ReLU(c1,izi+1 + b1,i).

(9)

The resulting NeuralLasso then formulates as

{Ĉ, b̂} = argmin
{C,b}

n
∑

j=1

[

yj − 3C(Zj)
]2
+ λ

2
∑

n=−2

p
∑

i=1

(

|cn,i| + |bn,i|
)

.

(10)
The parameters Ĉ and b̂ can then be found by any suitable
optimisation algorithm. ReLU functions were chosen, here,
because of their ability to keep some of the linearity and
introducing nonlinearity only by thresholding. Note that if all
the ReLU activations are changed to linear functions then the
model reduces to a sparse perceptron with biases (i.e., a single-
layer neural network), which will be an overparametrized version
of the lasso approach.Wewill shortly discuss our implementation
in the next section.

For the final estimation, we are only left with estimating
the penalty weight λ as in the classic lasso model. This can be
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achieved in a similar manner as used by Waldmann et al. (2019),
here, we use a slightly modified bisection method and a single
set of training data i.e., one realization of training and validation
split. We then initialize a starting interval [a, b] for λ, chosen
based on prior knowledge for the range of λ. We then compute
the correlation coefficient for λ = a, b, i.e., the end points of
the interval [a, b], and the mid point λ = a + b/2. Then, we
identify the value for λ with the largest correlation coefficient. If
it is one of the end points, we shift the interval around the end
point, which becomes the new mid point. If, otherwise, the mid
point has the highest correlation value, we keep the mid point,
but halve the interval size. We then repeat the process for the
new subinterval and compute the correlation for either one new
point, if shifted, or two, if halved.

We note that for simplicity we have made here certain
fixed choices and formulated NeuralLasso only for univariate
continuous outcomes using fixed neighborhood size of 5, with
ReLU as activation function and one layer. However, note that
these are not arbitrary choices. As was stated earlier, ReLU was
employed for its beneficial property of including linear functions
as special case, if appropriate biases are learned. Some choices
were found based on experimenting (e.g., neighborhood size of 5
provided good predictive performance) and some of the choices
(use of ReLU and linear activation functions) are discussed more
in the discussion section. We refer to the Appendix A for more a
general formulation of NeuralLasso using variable neighborhood
size and activation functions.

Example Analysis
In order to compare the prediction accuracy of differentmethods,
we analyzed the rice field data which is publicly available at
http://www.ricediversity.org/data/ and a heterogeneous stock
mouse population [see Valdar et al. (2006) for more details].
We selected traits in these data sets, which cover many levels
of heritabilities (ranging from 0.25 to 0.75) and arguably many
different genetic architectures.

Rice field data: The rice data set consists of 413 diverse
accessions of O. sativa collected from 82 different countries
(Zhao et al., 2011). The accessions were genotyped with single
nucleotide polymorphism (SNP) markers and 33,569 SNPs were
available for the analysis after excluding markers with minor
allele frequency (MAF)> 0.05, duplicated markers and missing
values > 20%. In this study, we analyzed the traits flowering time
(FT) (in three different locations) and amylose content (AMY).
The trait FT was measured in three different locations, the first
location (ARK) was in Stuttgart, Arkansas, USA, the second one
in Aberdeen (ABR) and the third location was Faridpur (FAD),
Bangladesh (see Zhao et al., 2011 for more details). Out of the
413 lines, phenotypic informations were available for 371 lines
in all three environments with the trait FT and 393 lines for the
trait AMY. Genetic architecture underlying the trait (some traits
are affected by many genes and some are by only few number of
genes) is often play an important role in the prediction accuracy
of different statistical methods. Thus we decided to consider
two traits (FT and AMY) with different genetic architecture in
this study. The narrow-sense SNP-heritabilities (h2) of the traits

were 0.50, 0.70, 0.50, and 0.26 for the phenotypes AMY, ARK,
ABR, and FAD, respectively. Here, h2 were estimated as: h2 =
σ 2
g /(σ 2

g + σ 2
e ), where σ 2

g and σ 2
e are the genomic and residual

variances, respectively. The variance components were estimated
using GBLUP method.

Heterogeneous stock mouse data: The mice data (see Valdar
et al., 2006) consists of 1940 individuals with 10345 biallelic SNP
markers after excluding markers with minor allele frequency
(MAF) = 0.05 and missing values = 20%. In this study, we
analyzed the trait “body weight,” which was measured at the age
of 6 weeks. The narrow-sense SNP-heritability (h2) of the trait
“body weight” was 0.58.

Results: To demonstrate the superiority of our new approach,
we compared the prediction accuracy (Pearson correlation
coefficient between the observed and predicted phenotypes) of
NeuralLasso with the most commonly used GP methods using
the rice data set. The GP methods we are considering here are
the GBLUP (Meuwissen et al., 2001), least absolute shrinkage
and selection operator (lasso) (Tibshirani, 1996) and elastic net
(EN) (Hoerl and Kennard, 1970). Also, Bayesian WGR models
we choosed to consider here are the BL (Park and Casella, 2008),
BayesA and BayesB (Meuwissen et al., 2001). Predictive abilities
of BayesA, BayesB and BL were estimated using the R-package
BGLR (Pérez and de los Campos, 2014). Whereas the predictive
abilities of GBLUP and EN were estimated using the R-packages
rrBLUP (Endelman, 2011) and glmnet (Simon et al., 2011),
respectively. To estimate the predictive accuracy of NeuralLasso,
the model was implemented in Python with TensorFlow
and the scripts used in this study will be publicly available
at: https://github.com/asHauptmann/NeuralLasso. Optimization
was performed with the Adam algorithm and a cosine decay from
10−3 to 10−5 with 3,000 iterations, as batch size we used the full
sample size.

In order to compare the prediction accuracies we used five-
fold cross-validation (CV), for that we used 80% of the data as
the training set and the remaining 20% as the validation set. To
remove the influence of random partitions on the accuracy, we
repeated the cross-validation procedure 50 times and took the
mean value. Additionally, we also used the same training and
validation sets with the different GP methods. In the analysis
using BGLR, we used the default priors and considered 10,000
Markov Chain Monte Carlo iterations with a burn-in period of
3,000 iterations. For the EN estimation using glmnet, we set α to
0.33 in Equation (3) based on cross validation.

In Table 1, we can see the prediction accuracies of different
methods in four traits (ARK, ABR, FAD, AMY) of rice data set,
as well as trait body weight of mice data set. These traits together
cover many levels of SNP-heritabilities. In traits ARK, ABR, and
AMY of rice and trait body weight of mice, NeuralLasso seems to
slightly outperform all the other methods, suggesting some role
of local interactions in the genetic architecture of the trait. In trait
FAD, the superior performance is much smaller and performance
is practically the same with the GBLUP. This is likely due tomuch
smaller SNP-heritability of the FAD than the other traits (see also
Figure 1which shows ordering of themethods in their prediction
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TABLE 1 | Mean prediction accuracy based on 50 CV replicates using different approaches for the traits with rice (ARK, ABR, FAD, AMY) and mice (WEIGHT) data sets

are shown along with the corresponding heritability (h2) estimate for the trait.

GBLUP BayesA BayesB BL ElasticNet NeuralLasso h2

Rice

ARK 0.664 0.666 (+0.30) 0.662 (−0.30) 0.665 (+0.15) 0.613 (−7.68) 0.672 (+1.20) 0.70

ABR 0.568 0.579 (+1.93) 0.565 (−0.52) 0.562 (−1.05) 0.546 (−3.87) 0.589 (+3.69) 0.50

FAD 0.473 0.477 (+0.84) 0.477 (+0.84) 0.474 (+0.21) 0.416 (−12.05) 0.478 (+1.05) 0.26

AMY 0.447 0.45 (+0.67) 0.451 (+0.89) 0.442 (−1.11) 0.419 (−6.26) 0.463 (+3.58) 0.50

Mice

WEIGHT 0.512 0.525 (+2.53) 0.521 (+1.75) 0.527 (+2.92) 0.503 (−1.75) 0.532 (+3.90) 0.58

Additionally, the percentage difference in prediction accuracy compared to the commonly used GBLUP estimation method is provided in the bracket.

FIGURE 1 | Mean prediction accuracy calculated based on 50 cross validations for different traits from the rice and mice data sets plotted against the corresponding

estimation methods.

accuracies). Superiority of NeuralLasso method becomes clear
also from here.

DISCUSSION

In this study, we have presented a shallow neural networkmethod
which takes into account higher order local epistatic interactions
in eachmarker’s neighborhood. In recent years, machine learning
methods including deep learning (DL) methods have been widely
considered for GP, however neural network methods perform

similarly or worst to the classical linear methods (Azodi et al.,
2019; Zingaretti et al., 2020; Montesinos-López et al., 2021). In
this study with the tested cases, our proposed method seems
to improve the prediction accuracy slightly over traditional
methods. We believe that the accuracy of NeuralLasso will
depend on the complexity of the trait. Unlike the traditional
genomic prediction models which are able to account for the
two-loci genome-wide interactions, NeuralLasso account for only
the additive and higher order local epistatic genetic effects. Thus
there is a reduced chance that the local epistatic genetic effect will
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disappear due to recombination and will be passed on to several
generations (Akdemir and Jannink, 2015).

Even though, deep neural networks have been popular so far,
size of learning data need to be large in many cases. We believe
that more shallow networks like the one presented here may turn
out to be useful and important in the future due to their more
limited learning data size requirements.

In fact, our proposed model is not a single-layer neural
network, i.e., a perceptron. In the classic perceptron the
nonlinearity is applied after summation, in our case the
nonlinearity is applied before to allow for nonlinear interactions.
On the other hand, one could say it is only one layer, but with
several channels, for each member of the neighborhood, that are
combined nonlinearly. In summary, this is why we say the model
is motivated by neural networks, but does not clearly fit in the
classic notion of a neural network. Finally, that is why we also do
not describe our model as a neural network, but as NeuralLasso,
motivated by the design of neural networks.

We also tested the performance of NeuralLasso when
changing all non-linear ReLU functions to linear ones (results
not shown). In those experiments, the prediction accuracies of
NeuralLasso method clearly dropped down in the rice data set
but stayed at about the same level in the mice data [when ReLU
functions in Equation (9) were replaced by linear functions].
This is well in line with what one expects to see in rice data
(high level of epistasis) and in mice data (small or no level of
epistasis). Therefore, the latter experiment arguably means that
our NeuralLasso may also be capable of taking into account
some other context-specific effects than only epistasis, because its
predictive performance was so high in mice data set.

In this study, we only considered small genomic region,
however, NeuralLasso can be adjusted to account for higher
order genetic interactions in larger genomic region of interest,
chromosome-wise or whole genome scale. Although this might
be computationally challenging, it will be interesting to see if
this turns out to be important in the future. In order to reduce

the computational burden, one can also first perform a genome-
wide association study (GWAS) and only account the regions of
interest (e.g., candidate gene regions) in NeuralLasso.

As in all genomic predictions, not any single statistical method
is clearly superior in their prediction accuracy for all traits, but
their performance depends on factors such as genetic architecture
and heritability of the trait. However, NeuralLasso performance
was found here to be promising and it is worth of considering in
the future.
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