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The field of structural engineering is vast, spanning
areas from the design of new infrastructure to the
assessment of existing infrastructure. From the
onset, traditional entry-level university courses teach
students to analyse structural responses given data
including external forces, geometry, member sizes,
restraint, etc.—characterizing a forward problem
(structural causalities → structural response). Shortly
thereafter, junior engineers are introduced to
structural design where they aim to, for example,
select an appropriate structural form for members
based on design criteria, which is the inverse of what
they previously learned. Similar inverse realizations
also hold true in structural health monitoring and a
number of structural engineering sub-fields (response
→ structural causalities). In this light, we aim to
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demonstrate that many structural engineering sub-fields may be fundamentally or partially
viewed as inverse problems and thus benefit via the rich and established methodologies from
the inverse problems community. To this end, we conclude that the future of inverse problems
in structural engineering is inexorably linked to engineering education and machine learning
developments.

1. . Introduction
The estimation of structural response from loading and boundary conditions is a fundamental
concept in structural analysis, from elementary Euler–Bernoulli beam theory to nonlinear
simulations involving complex structures subjected to extreme earthquake excitation. In fact,
numerical computation of structural responses from known causalities characterizes a forward
problem (cause → effect) and has rightly been the source of significant research since the advent of
modern computing. Among the myriad of computational frameworks, the finite-element method
(FEM) [1–4], finite difference [5,6], spectral element [7,8] and hybridizations [9] have proven both
widely applicable and successful over the years. The implementation of such forward models has
aided engineers in their ability to model, analyse and design structures with arbitrary geometry
and precision, contributing greatly to the presence of skyscrapers, supersonic aircraft, large cruise
ships and many more engineering examples. In the near future, the pervasiveness of, for example,
the FEM appears inevitable while its usefulness is unquestionable in structural engineering
applications.

Pragmatically, however, the final configuration of structural members is not known at the
beginning of the design process, i.e. one iteration of a structural simulation is not generally
sufficient in a real project. This reality implies that the design of structures is an iterative process—
for example, the identification of appropriately sized structural members, connections and
restraints (causalities) from design constraints, building codes and environmental considerations
(data). As is often the case, the iterative design process is carried out initially using design tables,
rules of thumb, handcrafted protocols, optimization regimes, etc. Nonetheless, this process is
emphatically an inverse problem, where an engineer is given data alongside design objectives and
challenged to determine the appropriate structural configuration (causalities).

Of course, the field of structural engineering is diverse, in which structural design is one
of many sub-fields where inverse problems are applicable. Perhaps a more straightforward
implementation of inverse problems is structural health monitoring (SHM), where real-time (or
near real-time) data are used in the prognosis of structural condition. Indeed, the detection,
localization, prediction and prognosis of potential damage processes are enabled in one of two
ways: (i) via pattern recognition or (ii) by solving an inverse problem (or series of inverse
problems) [10]. Moreover, certain non-destructive evaluation (NDE) approaches are also known
to employ inverse problems (e.g. X-ray computed tomography and emerging NDE approaches
in academia) to assess the damage state of structural elements measured offline [11]. For
contextualization, a schematic example contrasting the differences between forward and inverse
models is provided in figure 1; this well-known problem is referred to as an inverse elasticity
problem.

These, and many more sub-fields of structural engineering and structural mechanics
[12], not only can be (fundamentally or partially) viewed as inverse problems, but also,
as we aim to illustrate herein, can benefit from the systematic approaches constituting the
rich area of inverse problems. Too often overlooked by structural engineers and structural
researchers, the mathematics of inverse problems is an established field, ranging from classical
statistical/Bayesian methodology [13] to cutting-edge implementation of deep neural networks
[14]. Moreover, while the present use of inverse problem methodologies in structural engineering
is limited, its potential is immense across the expanse of the structural engineering sub-fields.

In this paper, this potential will be discussed in detail and contextualized among a broad suite
of existing inversion-based applications. To begin, a clear description of inverse problems and

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 J

an
ua

ry
 2

02
2 



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210526

..........................................................

finite element forward model 

inverse model

F

di
sp

la
ce

m
en

t f
ie

ldstructural
parameters
(causalities)  

1.0

0.8

0.6

0.4

0.2

0

Figure 1. Schematic illustration depicting the forward and inverse problem relationship for a stretched elastic plate with
randomized stiffness properties. The forward finite-element model inputs (causalities) are shown as the non-homogeneous
stiffness properties while the model output is the displacement field. By contrast, the inverse model aims to estimate the
stiffness properties given the displacement field. (Online version in colour.)

methods will be detailed. Following this, a review and discussion of inverse methodologies in
modern structural engineering applications will be provided. Inasmuch, the intent of this paper
is to examine the following topics in structural engineering through the lens of inverse problems.
We remark, however, that the forthcoming topical sections are not intended to be exhaustive
reviews, but, rather, to provide substantiating evidence for the pervasiveness of inverse problems
in structural engineering. Lastly, realizations, overview, paths forward and conclusions will be
presented.

2. Inverse problems, methods and contemporary use
Traditionally, the field of inverse problems is concerned with the mathematical question of
if and how one can determine the cause for certain measurements. Despite being primarily
mathematically oriented, the underlying questions always stem from relevant physics and
engineering applications. This is especially true for one of the most prototypical inverse
problems, the so-called Calderón problem [15], which asks: Can one determine the conductivity
of a body from electrical measurements at the boundary? In fact, this question arose during
Calderón’s time as a civil engineer, before he pursued an academic career in mathematics. In
the following, we want to close the loop back to civil and structural engineering application
that once motivated an entire field of mathematical studies, by using the insights gained in the
last decades.

More generally speaking, inverse problems consist of finding the unknown characteristics
of a structural system from some of the outputs, or measurements, of that system. Most
notably, this includes the above-mentioned inverse conductivity problem in geophysics [16] and
engineering, but also includes a large field with applications in medical image reconstruction
[17,18]. Mathematically, such problems are ill-posed, broadly meaning that the parameters to be
estimated, θ , are highly sensitive to changes in the measurement data, d. The solution to the
inverse problem involves estimating the parameter θ from a fixed set of measured data d, in
contrast to the forward problem of computing d from knowledge of the system parameter θ .
Specifically, this means, given the forward model U, which models the system equations, we first
formulate the underlying observation model

d = U(θ ) + δd. (2.1)
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Here, δd denotes an error term, modelling several sources of possible errors, such as inaccurate
measurements or even inaccuracies in the model simulation. The question that remains is: How
can we obtain θ from d given the above relationship?; we will call this the reconstruction problem
in the following. It is important to note that we cannot simply invert the forward problem (2.1),
as the ill-posed nature implies that there can be either no or multiple solutions and additionally
under inevitable measurement noise these solutions are not stable to compute by direct inversion.
This ill-posedness of the inversion procedure constitutes the underlying paradigm of an inverse
problem.

In order to obtain stable reconstructions, we make use of a concept known as regularization
[19], which aims to assign a unique solution to each set of measurements in a stable manner;
this means that if the noise in the measurement vanishes, we would obtain the original system
parameter. We can separate such stable reconstruction procedures into two primary classes: those
that compute a solution θ∗ directly from measured data and those that iteratively aim to fit a
solution by minimizing a suitable cost functional. In the first case, we aim to formulate an inverse
mapping U†, such that

U†(d) ≈ θ . (2.2)

The primary problem in obtaining such direct inversion algorithms is that they can be highly
dependent on the problem under consideration. This is especially so when the relationship
between d and θ is nonlinear. Thus, obtaining such a mapping is a highly non-trivial task, but
reveals much about the underlying problem characteristics and hence is a primary interest of
mathematical research [17,20,21].

The second case is a more principled approach that can be formulated for a large class
of problems. The underlying premise is to reformulate the reconstruction problem as an
optimization problem. That is, we formulate a cost functional that measures how well our
reconstruction fits the data while simultaneously enforcing some additional characteristics and
acting as regularization for the reconstruction process. Specifically, the reconstruction problem
can then be written as finding a minimizer of

θ∗ = arg minθ

1
2
||U(θ ) − d||22 + αR(θ ). (2.3)

Here, the first term enforces that reconstructions fit the data, whereas the second term is the so-
called regularization term. As discussed previously, this regularization term is necessary when
dealing with inverse problems, as it prevents a solution from over-fitting the measurement noise.
Importantly, by incorporating prior knowledge in the design of R [22,23], we effectively choose
preferred solutions and overcome the problem of non-uniqueness. Finally, the parameter α > 0
balances both terms and depends on the noise amplitude. Solutions to (2.3) are computed by
suitable optimization schemes, for which repeated evaluation of the forward model U will be
necessary. Consequently, computing solutions to (2.3) can be highly expensive, if the evaluation of
U is expensive. Thus, for nonlinear problems fast converging algorithms, such as Gauss–Newton
or related methods [24], are preferred.

Lastly, with the recent rising popularity of data-driven methods, researchers have designed
computationally more efficient ways to address the reconstruction problem [25]. Such data-
driven approaches are often inspired by the classical reconstruction algorithms discussed
above. For instance, one can replace the direct reconstruction operator, or parts of it,
with a data-driven component, typically consisting of a neural network [26–28]. Given
a set of informative reference data, one can then learn a suitable mapping mimicking
(2.2). Alternatively, researchers have investigated the possibility of improving the iterative
process to compute solutions to (2.3), by replacing parts in the optimization algorithm
with learned components [14,29–32], or entirely building network architectures motivated
by the iterative solution process [33,34]. The use of data-driven methods is expanded upon
in §7.
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Figure 2. Relationship between structural analysis and design, in which design is the inverse problem of evaluating a suitable
structural solution given a set of constraints. Some constraints (such as stability constraints) render themselves more easily to
quantitative treatments. (Online version in colour.)

3. Structural design as an inverse problem

(a) Demarcating structural analysis and design
Prior to the Second World War, engineering higher education was originally focused on the art
and practice of engineering design [35]. By the 1960s however, owing to the success of science-
based ventures such as the Manhattan Project and the rise of government-sponsored research
grants that severed the link between academia and industry, engineering science became the
main field of research and teaching at universities [36]. This research led to the development of
powerful structural analysis techniques, yet also left engineering graduates with a noticeable loss
of practical engineering skills [37]. In the 1990s and early 2000s, there was a push to introduce
capstone design projects in university engineering degrees to address this shortcoming, the
success of which is disputed [38].

There is a broad agreement within the literature that analysis and design are two distinct
activities. Structural analysis, which falls into the field of engineering science, is primarily
concerned with establishing knowledge-that explains the world, whereas design is concerned with
knowledge-how something works [39]. Design is often characterized as being ill-structured [40],
open-ended [41] or even ‘wicked’ [42], qualities which do not necessarily lend it to science-based
research and helps motivate the search for a different paradigm which more adequately addresses
its true nature.

One perspective to account for these differences is to recognize structural analysis and
structural design as being two different types of problems. Although structural analysis is
typically seen as a sub-field of design to validate and justify the adequacy of structural elements
[43], we like to advocate the view that structural design is in fact an inverse problem, with structural
analysis forming the related forward problem.

Unlike typical inverse problems such as the one shown in figure 1, where physically measured
data (the displacement field) are used to identify the causalities (stiffness properties), in structural
design we are dealing with a theoretical construct, or ‘theoretically’ measured data. These data
contain the set of complex design constraints which need to be adhered to, such as ultimate
(ULS), serviceability limit states (SLS), sustainability and constructability. From this perspective,
structural design can be seen as the process of arriving from a specific set of constraints to a viable
structural solution, with analysis being the process of checking if the proposed structural solution
adheres to those constraints, as shown in figure 2.

This perspective is evidenced by realizing that the key features of inverse problems,
specifically their ill-posed nature as explained in §2, manifest themselves in design. Their shared
characteristics include being unstable, non-unique and sometimes unsolvable problems [44]. Note
how these qualities were alluded to as ‘ill-structured’, ‘open-ended’ and ‘wicked’ by previous
researchers, yet, to the best of our knowledge, this is the first time that literature has attempted to
view structural design as an inverse problem.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 J

an
ua

ry
 2

02
2 



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210526

..........................................................

Table 1. Overview of ill-posed inverse problem features in the context of structural design.

ill-posed inverse
problem characteristics general description examples in structural design

unstablea small changes in constraints can lead to
large changes in the solution space

impact of grid spacing on the selection of
appropriate floor options

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

non-unique for a given set of constraints, multiple
solutions exist

various truss archetypes which can span
the same distance

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

unsolvable lack of realistic constraining data impedes
the search for an adequate solution

current lack of appropriate structural
materials for space elevator designs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aIn reference to the solution space, not structural instability (buckling); see [44].

We suggest that the application of the inverse problem perspective in design gives rise
to the idea of a ‘design model’. Similar to how an ‘analysis model’ allows us to evaluate
the action effects of a given structural solution, solving the forward problem shown in
figure 2, a ‘design model’ would generate structural solutions which adhere to the given set
of user-defined constraints, solving the inverse problem. This perspective sheds light on the
characteristics which design problems directly share with other inverse problems, such as
the non-uniqueness property. Multiple viable solutions often exist to any given design brief,
one example of which are the various truss archetypes for bridge designs to span a similar
distance. In order to create a viable design model, it would be necessary to provide some
form of regularization, examples of which are provided in §5 in the context of SHM, to
effectively encourage design models to choose preferred solutions based on prior knowledge.
This could be achieved by constraining the solution space to a sub-set of structural systems,
cross-sections or materials based on the specific constraints provided. Other properties of inverse
problems which arise in design are shown in table 1 and a comprehensive understanding of the
application of the inverse problem perspective warrants further research using specific design
examples.

We note that the design problem can be also formulated as an optimal control problem [45],
where the optimal design parameters are thought to be found as a minimizer of a penalty function
while satisfying the system equations. Whereas the optimal control approach can provide an
effective way to solve complicated design problems, it falls short in accounting for uncertainties
or inaccuracies in the forward model, and especially the link between measurement and system
parameters. We believe that here lies the strength of the inverse problems viewpoint, which offers
a rich interpretation and link between the system parameters and measurements given as the
forward model. This is promising not only for the optimization task in the design process but also
for new ways to approach the modelling of the forward problem.

(b) The link to structural optimization
As explained in §2, inverse problems can effectively be solved iteratively [46]. This process
involves making an estimate of the structural solution based on experience and design heuristics
(such as simple rules of thumb), checking those estimates through an analysis (forward) model
and updating the model if necessary; in other words, this approach is characterized by creating an
optimization problem. Some examples of forward-driven optimization models used in structural
design include: optimizing the deformed shape of flexible formwork structures to predefined
target geometries [47,48], best-fit geometry optimization of thrust networks in the design of shell
structures [49] and finding the optimal structural forms for long-span bridges [50], gridshells [51],
trusses [52], portal frames [53] and structural sections [54].

A key theme in these research works is that the structural geometry or member proportions
are not initially defined, but rather are form-found or discovered in the process, based on the
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defined loading, boundary conditions and objectives. Often these discovered structural forms
may lead to step change benefits in terms of performance or reduced material usage, as they are
unbiased by our preconceived perception of what a ‘good’ structure is, or by what we currently
design and build in the construction industry with standard template solutions. It is also true
for many cases that a solution may not even exist, forcing us to accept a closest best fit solution,
or it can be that an optimal solution may have multiple candidates by virtue of the structure’s
static indeterminacy. A common problem with a forward (sometimes brute force) optimization
approach, can be lengthy computational times for structural analyses in the objective functions,
and the sheer size of the design (and hence optimization) search space, stemming from many
wide-ranging input design variables. While fast and globally convergent convex optimization
programs can be set up, many practical structural engineering design problems are inherently
nonlinear in nature, forcing a slower approach that uses local searches or heuristic methods with
no guarantee of a global optimum. This is a current challenge faced in solving inverse problems
iteratively with forward models.

(c) Implications of treating structural designs as inverse problems
This inverse problem perspective has various implications. Firstly, it should emphasize that
design problems ask a different question from those related to analysis. An analysis model
solves the forward problem, and answers questions such as: What is the ULS utilization ratio
of a particular beam system for a specific load, with the following specific cross-sections and
support conditions? An appropriate design model would ask the reverse: What is the group
of cross-sections and support conditions which ensures a utilization ratio of less than 1.0 for
this particular beam system to carry this particular load? In this formulation, the magnitude of
loading and the utilization ratio serve as the design constraints (both are known ‘data’). Whilst
engineering science has produced sophisticated analysis models, the research of such ‘design
models’ is lacking in academia.

Secondly, the inverse problem perspective sheds insight on the possibility of using data-driven
approaches as opposed to more typical optimization techniques. The rise of machine learning and
deep neural networks could be used for the development of such ‘design models’, which focus on
directly identifying a set of structural solutions from a given set of constraints using learned data.
Such models could address some of the challenges faced in design due to tight deadlines that
force early design decisions, whose full implications might only be realized at the detailed design
stage when changes become cost and time prohibitive. This can lead to structural solutions that
are difficult to build, have poor sustainability metrics and can be costly to engineer and fabricate.
If one instead considers the design process in an inverse manner, rooting firmly first at the end
goal, it could be possible to reduce project risk and pick more effective structures by appreciating
many solutions to the brief from the onset. This was already alluded to in §2 and is expanded
upon in section §7.

Lastly, the ultimate benefit of an inverse problem perspective is that it helps to clearly
distinguish between analysis and design procedures and provides academia with an adequate
framework to contextualize design model research. Engineering academia has been dominated
by the engineering science perspective [55], predominantly choosing to research and teach
forward problems. One of the uncomfortable implications of this view is that engineers from
over 150 years ago, who trained primarily in the art and practice of engineering design, may
in fact have been better ‘inverse-problem solvers’ than academics and graduating engineers of
today (who are stronger in solving the well-structured forward problems) [56]. This might help
swing the pendulum away from focusing exclusively on forward models (analysis) towards
a more stable equilibrium with inverse models (design) by acknowledging the existence of
these two related, albeit distinctively different, types of problems. The use of inverse problem
and inverse analysis in a related field to structural design, notably blast engineering, is
discussed next.
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4. Extreme loads on structures

(a) Blast loading and inverse analysis
High-rate dynamic loads can arise from events such as earthquakes, wind, tidal waves, impacts
and accidental or malicious explosions. Here, the imparted load may be comparable to or several
times larger than the strength of the material it is acting on, it can be applied and removed in
sub-second durations and it is often highly localized. Accordingly, the notion of static structural
design according to a pre-determined distribution of stresses and strains may not be appropriate,
and instead the designer must consider energy balance, nonlinear analyses and deformation
modes for which there is no equivalent static counterpart.

Blast loading is undoubtedly one of the most aggressive forms of dynamic loading. When an
explosive detonates it undergoes a violent and self-perpetuating exothermic chemical reaction,
releasing energy through the breaking of inter-molecular bonds during oxidation [57]. The
explosive material is converted into a high-pressure (10–30 GPa), high-temperature (3000–4000◦C)
gas which violently expands, displacing the surrounding air at supersonic velocities (6–8 km s−1).
This displacement causes a shock wave to form in the air, termed a blast wave, which eventually
detaches from the expanding detonation product ‘fireball’ and continues to propagate into the
surrounding air, decreasing in pressure and density as it expands.

When a blast wave encounters an obstacle some distance from the source it will impart
momentum as the air is momentarily (either fully or partially, depending on the compliance
of the obstacle) brought to rest at the air/obstacle interface. Prediction of blast even in the
most simple settings is a considerable challenge to the scientific community. This becomes
an increasingly complex and multi-faceted problem when considering issues such as: obstacle
orientation; proximity of the obstacle to the source and additional momentum transfer from
fireball impingement; secondary combustion effects either at the air/obstacle interface or in
late time owing to partial or full confinement of the explosive products; and the presence of
mitigating or blast-enhancing materials (soil, reactive munitions, etc.).

Real-world blast events are highly uncertain, and the need for inverse analysis is clear: it is
very rare that the exact size, shape, composition and location of an explosive device is known
a priori. Instead, information relating to the cause of an explosion should be estimated, within
reason, from the more readily observed effects, i.e. the magnitude and severity of structural
damage to surrounding buildings and cratering of the ground surface. While inverse analysis
is well established for practical post-event assessment of explosions—and has been used to
determine the size/location of blast events through forensic investigation of social media videos
[58] or numerical modelling correlating structural damage [59,60]—the use of inverse modelling
in an academic context is yet to be exploited fully. In the former, order-of-magnitude estimates
are typically deemed sufficient, whereas the latter requires repeatable, precise measurements and
high levels of experimental control.

The lack of robust yet high-fidelity experimental techniques has stifled academic research into
close-in blast for some time. Close-in blast is typically defined as the region within approximately
20 radii from the charge centre, where loading in this region is characterized by a near-
instantaneous rise to peak pressure of the order of 100–1000 MPa, followed by a rapid decay to
ambient conditions typically occurring in sub-milliseconds. The subsequent structural response
may reach a peak value of the order of 10–100 mm and, while this may occur orders of magnitude
slower than load application, deformation cycles are still generally within millisecond durations.

Recently, two notable advancements have been made in experimental characterization of close-
in blast and structural response. In the first of these, researchers at the University of Sheffield
(UoS), UK, developed a large-scale apparatus for the spatial and temporal measurement of blast
pressures from close-in explosions [61,62]. In the second, researchers at the University of Cape
Town (UCT), South Africa, adapted the well-known digital image correlation (DIC) technique to
measure the transient response of the rear face of blast-loaded plates [63]. These two techniques
were combined in a recent study [64,65] where, for the first time, detailed loading maps and
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Figure 3. Directly measured (UoS) and inferred (UCT) specific impulse distributions from studies of blast loading and plate
deformation following detonation of spherical explosives, expressed at 100 g (UoS) scale; after [64].

temporal structural response profiles were developed independently, in a single-blind study, for
identical (scaled) experimental set-ups.

(b) Proof-of-concept experimental studies
Of the experiments performed in [64], 12 are relevant to the notion of inverse analysis of blast
loading and structural response, and will be discussed here. Six tests were performed with
spherical explosive charges; three at UoS measuring blast loading and three at UCT measuring
structural response. In the UoS spherical tests, 100 g PE4 charges were located at 55.4 mm clear
distance from the centre of a nominally rigid target, on which the reflected blast pressures
were measured. In the UCT spherical charge tests, 50 g PE4 charges were located at 44.0 mm
clear stand-off distance from the centre of the flexible target plates: 300 mm diameter, 3 mm
thick, Domex 355MC steel plates, fully clamped around the periphery. The plate response
was filmed using a pair of stereo high-speed video cameras and DIC was used to determine
the transient plate response. The two test series can be expressed at the same scale using well-
known geometric/cube-root scaling laws. Here, it is assumed that the flexible targets deform
on time scales that are orders of magnitude longer than the loading application, and therefore
differences between the loads imparted to the rigid and flexible plates are negligible.

Specific impulse is given as the integral of pressure with respect to time. Numerical integration
of the UoS pressure histories (at various distances from the centre of the plate) yields directly
measured specific impulse distributions. The first few frames of the UCT tests were used to
determine initial velocity distributions of the plate, from which the imparted specific impulse
could be inferred through localized conservation of momentum: i(x) = v(x)ρt, where i is the specific
impulse, x is the distance from the plate centre, v is the out-of-plane velocity of the plate, ρ is
the density (7830 kg m−3 for Domex 355MC) and t is the plate thickness.

The results for the spherical tests are shown in figure 3. The full-field inferred specific
impulse distributions are in close agreement with the discrete, directly measured values, and
both measurements form a tight banding in an approximate Gaussian distribution [66]. Not only
does this indicate a high level of test-to-test repeatability for each method, but also demonstrates
that the two methods are measuring the same underlying phenomena, albeit in entirely different
ways. Thus, it can be said that an imparted impulse will result in an initial velocity uptake which
is directly proportional, and therefore measurement of one allows for the other to be determined.
This proves the concept of using plate deformation under blast loads in an inverse approach—
namely that from knowledge of plate deformation one may be able to determine the imparted
load—and provides physical verification of the inverse approach developed by [67,68].

In addition to the spherical charge tests, six tests were performed in [64] using squat cylinders
(height:diameter of 1:3). Such charges are known to produce a more concentrated load, with the
fireball propagating at higher velocities along the axis of the charge [69]. This accelerates the
growth and emergence of surface instabilities [70], which gives rise to a more variable loading
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Figure 4. Directly measured (UoS) and inferred (UCT) specific impulse distributions from studies of blast loading and plate
deformation following detonation of cylindrical explosives, expressed at 78 g (UoS) scale; after [64].

distribution [71]. A key research question in this study was: Will a more variable loading result
in a more variable structural response? In the UoS cylindrical tests 78 g PE4 charges were
located at 168.0 mm clear distance from the centre of the target, and in the UCT cylindrical tests
50 g PE4 charges were located at 145.0 mm clear distance from the centre of the target. Again,
specific impulse distributions were both directly measured and inferred from the plate response,
respectively, and the experiments were expressed at the same scale using common scaling laws.

The results for the cylindrical tests are shown in figure 4. While the two methods again show
good agreement, the results can be seen to form a much wider spread. In contrast to the spherical
tests, where peak specific impulse was seen to consistently act in the plate centre for all tests, here
the peak value is often up to 25 mm from the plate centre (approximately equal to the charge
radius), in both the directly measured and inferred values. The inferred values are generally
bounded by the directly measured values, which suggests that this spread is indeed a genuine
feature caused by application of a more variable load.

(c) Outlook
The aforementioned studies [64,65] have provided a firm physical basis for inverse analysis
in the context of extreme loading and structural response. The results have clear implications
for the future of research in this area. Namely, it has been demonstrated that not only can
inverse analysis provide excellent predictions of blast loading in repeatable, well-controlled
situations (as with the spherical tests in [64]), but also structural response measurements are
potentially sensitive enough to detect localized variations in loading (as with the cylindrical
tests in [64]). This is particular important in situations where a highly variable loading might be
expected (e.g. from explosives buried in well-graded soils [72]), but statistical variations cannot
be determined in a robust sense when using direct measurements (note the discrete nature of
the direct measurements in this study, compared with the effectively continuous nature of the
inferred measurements). This technique may permit, through inverse methods, fundamental
scientific studies of complex mechanisms governing blast loading following close-in detonation
of explosive charges in situations where previous research has not yet been possible.

5. Structural health monitoring

(a) Background on inverse methods in SHM
Unlike the fields of structural design or blast engineering, it is well known that inverse
problems are deeply connected to SHM. In fact, computerized damage detection can generally
be recognized as either a pattern recognition or inverse problem [10,73,74], where unknown or
uncertain parameters (causalities) are estimated via quasi-static or dynamic structural response
data. Among the numerous inversion-based approaches, FEM updating methodologies are
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among the most pervasive [75–78]. Much of the noted popularity is owed to the flexibility of
the FEM for comparing modal parameters with an undamaged state and in compensating model
errors.

Meanwhile, analytical [79], wavelet [80], fractal [81], fuzzy system [82], Kalman filter [83],
chaotic interrogation [84], shape function [85] and particle filtering [86] approaches, among many
others, have proven successful in uncertain inverse parameter identification applications within
SHM. Broadly speaking, inverse SHM approaches can be grouped as either deterministic or
probabilistic [87]—which is also generally the case in classical inverse problems [13]. In the latter
case, estimation of uncertain SHM parameters takes the form of a probabilistic term; for example,
a value with an associated certainty, a probability itself, etc.

Irrespective of the computational approach used in damage detection, two key realizations
affect the efficacy of inversion methodologies: (i) a baseline is generally needed to detect/quantify
damage [88] and (ii) the presence of damage inherently influences the linearity of structural
behaviour [89]. In addressing (i), reference-free or baseline-free frameworks have been introduced
[90–93] via the introduction of either assumptions on the reference state, implementation of
prior physics knowledge or probabilistic regimes. On the other hand, nonlinearity in the
structural response can either act as a corrupting entity when linear forward models are used
(e.g. unacceptable forward model error) or be used as an advantage when properly leveraged.
Regarding the latter, as noted in [89], methods based on nonlinear indicators, dynamical systems
theories and nonlinear systems identification approaches can be used to aid or enrich the damage
identification process; such a conclusion can also be extended to the pure usage of inverse
approaches in damage detection.

In the past 30 years, implementation of inversion-based damage detection methods in SHM
has steadily increased. This is the result of the increase in both inverse problems know-how and
computational resources. Yet, since the emergence of contemporary machine learning, the ability
to solve problems deemed previously intractable has exponentially increased opportunities in this
area. For example, in many cases, forward models may not be available or are too computationally
expensive, sufficient nonlinearity may exist to effectively model the desired physics, errors in
highly reduced models may be excessive, the ability to compute model gradients may be overly
expensive, etc. Moreover, the ability of classification networks to readily classify important
variables such as the probability and/or severity of damage from structural data is intuitively
appealing and pragmatically useful. In the following, we will provide contemporary examples
highlighting the use of both classical and machine learning-based SHM inverse approaches.

(b) Static inverse problems in SHM
Incorporation of discrete static (or quasi-static) data measured from structures into SHM
frameworks is well established. For example, a number of sources, including corrosion, relative
humidity, fibre-optic, topography, laser, potentiometer, strain gauge, electrical and thermal
sources, have been successfully integrated into long-term condition monitoring protocols [94].
The richness of spatial–temporal data obtained from these sources lends itself well for use in
inversion-based SHM, i.e. given a set or sets of static SHM data, use an inverse methodology
in capturing (potential) damage. This is true in cases where numerical models are available for
the problem physics and when they are not (e.g. learned models can act as surrogates when
physics-based models are unavailable).

The sheer volume of literature available reporting the successful use of static inversion
methods in SHM is formidable. However, roughly speaking, static inverse methodologies have
been implemented within three areas: (i) point sensing, (ii) area sensing, and (iii) volumetric
sensing. Holistically, it can be difficult to distinguish between each of these areas; for example,
when lower dimensional measurements are extrapolated to characterize damage in area or
volume targets [95,96]. One such example is DIC, where the displacement field at discrete points
on a structure is inversely computed via pixel movement and then extrapolated (interpolated)
to a full field, whereby the quality of the computed field is highly dependent on the quality
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of the contrasting area speckle pattern [97]. Similarly, one may consider the distinguishing of
static measurement dimensionality as a local–global phenomenon where discrete local changes
contribute to the analysis of the global structural system [95]. Lastly, to complicate matters
even more, the use of discrete measurements can yield two- (2D) or three-dimensional (3D)
information—as in the case of penetrative electrical measurements, where currents diffuse
through the entirety of a body [98].

Fortunately these, perhaps philosophical, realizations are often washed out via the nature of
inversion methodologies themselves. Pragmatically, at least in the context of SHM, the solution
to static inverse problems generally requires a model, either physics based or learned. As such,
the amalgamation or assimilation of data and solution dimensionality is often simply a matter of
discretization or model generation. In a similar vein, when static inverse problems are ill-posed,
solutions generated using lower dimensional data are regularized/biased using prior models
consistent with the solution dimension.

Many examples are available in the literature illustrating the efficacy of static inversion
methodologies for applications in a suite of SHM implementations. For example, the use of
displacement measurements for capturing SHM causalities in various structural geometries was
reported in [99–101]. Of note, the specific applications using displacement fields to reconstruct
elastic and elasto-plastic properties (and corresponding damage characteristics) have been
the source of significant research [102–117]. In the pervasive case where displacement/strain
measurements are discretely measured from strain gauges/fibre-optics, inverse methodologies
have also been fruitfully employed for damage characterization, pressure and strain mapping,
and shape sensing [118–129]. Perhaps one measure illustrating the success of such inverse
approaches is highlighted by the recent interest in optimizing the related sensing schemes
[118,130–132].

In the past decades, the emergence of electrical inverse methods has also proven a viable
approach to static condition monitoring [133,134]. This family of inversion-based modalities
generally uses three different data sources, including capacitative, direct current and alternating
current-based measurements. Capacitative sensing is perhaps the newest of these approaches
to sensing, where SHM causalities can be inversely computed using smart bricks [135], area
sensors [136–139] and electrical capacitance tomography [140,141]. On the other hand, owing to
its established history in medical and geophysical applications, electrical impedance tomography
(EIT, or electrical resistance tomography, ERT) is becoming a well-established approach to
damage detection, reconstruction and localization, especially in concrete applications. For these,
EIT presently manifests via two approaches, reconstructing conductivity maps using boundary
voltages measured from area-sensing skins [142,143] or directly imaging a 3D cementitous body
[144]. Representative 2D EIT reconstructions are provided in figure 5 using a machine-learned
approach (direct reconstruction) for imaging flexural and shear cracks in concrete elements.
To this end, EIT has also been used for characterizing area corrosion [143] and localizing area
temperature variations [145].

In summary of this sub-section, it is clear that the use of inverse methodologies in static
SHM applications is pervasive. Meanwhile, a number of inversion-based modalities are still
emerging—or are yet to emerge. Indeed, given the number of potential static data sources
available at present, there exist substantial opportunities to investigate or formulate new
inversion-based modalities. In the light that some physical models for various underlying physics
remain unavailable (either in open source or in general), the use of learned models may bridge
this gap. Lastly, there currently exist tremendous opportunities in the areas of data fusion and
joint imaging, which remain predominately unexplored in the area of static inversion-based
SHM [146].

(c) Dynamical inverse problems in SHM
The use of dynamical data for monitoring the health and condition of structures is well established
[147]. For this, a number of data sources are available, for example discrete acceleration,
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Figure 5. Reconstructions (right column) report probabilistic predictions of local flexural and shear cracking in concrete
elements. The colour bars represent the probability of cracks at nodal locations: (a) simulated shear cracking pattern,
(b) probabilistic prediction of the shear crack pattern using a convolutional neural network, (c) photo of a flexural crack in an
area-sensing skin and (d) probabilistic prediction of the flexural crack using a feedforward neural network. (Online version in
colour.)

strain, displacement measurements and, recently, coupled electromechanical impedance via
piezoelectric transducers [148,149]. In the case of typical civil infrastructure [150], the ability to
actively excite monitored structures is pragmatically challenging owing to the extreme magnitude
of the excitation required to attain a distinguishable response. For this reason, ambient monitoring
methodologies have gained significant popularity in recent years [151–153]. Irrespective of the
dynamical monitoring approach used, extracting dynamical structural properties of interest can
be viewed as an ill-posed inverse problem [154]. The ill-posedness of such problems results
from a number of actualities, not limited to uncertainties in environmental conditions (wind,
temperature, ground conditions, humidity, etc.), traffic, measurement noise, the discrete nature
of measurements, material characteristics and numerical modelling error.

One of the most pervasive frameworks used in solving dynamical inverse problems
is model updating, which generally aims to match a physics-based model (such as a
representative finite-element model) to measured dynamical data [73,89], commonly using a
form of modal analysis [155–157]. The physics-based techniques are particularly efficient in
providing higher accuracy when testing is restricted. It is often the case that reconstructing
the dynamical SHM properties of interest proves difficult, requiring an innovative approach;
some proposed frameworks have included advanced optimization protocols [158] and mode
decomposition/superposition [159]. Alternatively, the use of phase space [160], state space [161],
singular value decomposition, the λ-curves method [162,163] and auto-regressive [164,165],
Gaussian process [166] and Bayesian/stochastic approaches [167–170] has proven successful. As
noted in the previous sub-section, one metric for assessing the progress in this field is the number
of works aiming to optimize sensing information, for example in [132,171–178].

In the past 20 years, guided wave-based modalities have emerged as a viable approach to
dynamical inversion-based SHM [179–186]. Common physical manifestations of guided waves
include Lamb waves (propagating through thin shell and plate structures) [187], Rayleigh
waves (surface waves) [188] and shear waves. Generally speaking, SHM systems consist of
transducer systems used for actuation and measurement accompanied by an inversion algorithm
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aiming to reconstruct SHM causalities of interest. Owing to a number of numerical challenges,
conventional solutions to related inverse-guided wave problems are generally not feasible [183].
Consequentially, alternative methodologies have been proposed, including, for example, inverse
filtering [189], reverse time migration [190,191] and Bayesian/probabilistic [192,193], among
emerging inversion approaches.

While the use of dynamical inversion-based techniques is well established in conventional
monitoring, in some areas (such as guided wave monitoring) it remains in the early stages of
development and affords numerous research opportunities. It is worth mentioning that with
the advent of modern machine learning methods, we can only anticipate significant advances in
forthcoming years as trained networks are now capable of addressing key SHM challenges related
to, for example, model error estimation/correction [194] and reducing computational demands
associated with many SHM facets [195,196].

(d) Computer vision inverse problems in SHM
In addition to the discussed static and dynamic inverse problems in SHM, computer vision-based
SHM methods have become an emerging field in inverse engineering problems in approximately
the past decade. Relying on digital images and videos, vision-based SHM techniques enable
affordable and rapid structural prognosis. The concept of vision-based inverse problems is
straightforward: visual information from the external surfaces of structures is captured through
digital cameras, serving as input data for computer vision algorithms in detecting, localizing and
quantifying structural damage in a variety of contexts.

Computer vision-based inverse problems can be either static or dynamic in nature. In
dynamical environments, a digital camera is treated as a vision sensor measuring dynamic
structural responses. Instead of directly capturing the structural vibration through contact-based
sensors (e.g. accelerometers), vision-based algorithms can track structural responses through a
video stream. For example, in [197], researchers applied a video feature tracking technique to
measure the pixel movements of a steel girder in a football stadium under a service load using a
consumer-grade digital camera. These movements were then converted into displacements using
a scaling factor. Similar efforts have been reported in [198,199]. Furthermore, through the use of
cameras as displacement sensors, other key structural features, such as natural frequencies/mode
shapes [200,201], beam influence lines [202] and bridge cable loads [203], have been be
estimated.

In addition to tracking the surface motion, computer vision algorithms can offer rapid and
reliable inspections against structural damage such as cracks [204], concrete spalling [205], steel
corrosion [206] and other structural deterioration [207]. To make this viable, researchers develop
vision-based algorithms to scan and extract damage-induced visual features either across the
entire image scene or within a small predefined image patch (e.g. region of interest) that is prone
to structural deterioration. In general, the image-based damage extraction techniques can be
categorized as: (i) machine or deep learning-based methods and (ii) non-learning based methods.

The idea of machine or deep learning-based (computer vision) methods is to train a damage
detection classifier through an image dataset with pre-labelled structural damage. Then, the
classifier is applied in characterizing structural damage from newly captured images. Some
of the successful applications include detection of concrete cracks [208,209] and spalling [205],
steel cracks [210], bolt loosening [211,212], steel surface defects [205], pavement cracks [207]
and complex situations where multiple damage types exist [213]. By contrast, non-learning-
based methods can directly pick up image features caused by structural damage, and hence
do not require any prior knowledge in training the classifier. For instance, fatigue cracks in
steel bridges can be identified through crack breathing behaviour [214]. Also, loosened bolts
in steel connections can be quantified by extracting the differential features provoked by bolt
head rotations [215]. Figure 6 illustrates an example by comparing two images of a steel
connection at different inspection periods to extract the differential features provoked by the
loosened bolts.
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(a) (b) (c)

Figure 6. An example of vision-based bolt-loosening detection where (a) and (b) are images of a bolted connection taken
at different inspection periods. Two loosened steel bolts are shown in the blow-up figures with counterclockwise rotations in
their bolt heads. Using a series of image-processing techniques, the differential features caused by the bolt loosening can be
identified in (c). Detailed discussion can be found in [215]. (Online version in colour.)

Computer vision-based methods can be extended for damage detection and pattern
recognition in full-scale civil structures. Using the platform of unmanned aerial vehicles
(UAVs), the on-board UAV camera can rapidly scan the structure, including the locations that
are challenging to be accessed by traditional contact-based sensors. For example, researchers
in [216,217] applied UAVs and vision algorithms to leverage effective approaches for post-
earthquake building safety inspections. Similar efforts have been reported for inspecting dams
[218,219], tunnels [220] and railways [221]. Other researchers adopted satellite images to examine
damage status over a larger scope of work (i.e. multiple buildings at the community level) after
natural disasters such as flood, earthquake, volcanic eruption, hurricane and wildfire [222,223].

UAV platforms are also capable of collecting a large volume of images of civil structures
under different camera angles through automated route planning. Such an advantage can be
further enhanced by a computer vision workflow, termed photogrammetry, for the purpose of
reconstructing the 3D model of the structure. Relying on structure-from-motion with multi-view
stereo (SfM-MVS) algorithms [224], the photogrammetry technique can create a 3D structure
model (e.g. a 3D point cloud) based on 2D images. Photogrammetry leverages several potentials
in inverse SHM problems. For instance, in recent work, [225] created a dense point cloud of a
building in a construction site based on UAV images. Then the point cloud was integrated with a
building information model (BIM) to label the structural components in the original UAV images.
In [226], the researchers used the dense point cloud to assist the creation of a finite-element model
of a masonry bridge. The authors argued that the benefit of using the point cloud was twofold:
the point cloud depicted the accurate geometric information of the bridge and offered the results
of bridge crack distribution. In [227], researchers leveraged the photogrammetry workflow to find
concrete cracks and spalling of a highway bridge. Lastly, in the context of the 2021 Hernando de
Soto Bridge incident [228], where a large crack was discovered in a ‘fracture critical’ element by a
private engineering firm—yet, was previously identified approximately 2 years earlier by a local
operating a commercially available drone—the use of coupled UAV/computer vision approaches
to SHM may be more valuable than ever.

(e) Digital twins and outlook
As this section has illustrated, the use of inverse methodologies in SHM is both well established
and an area of active development. With the rapid digital transformation of structural assessment
and infrastructure asset management, the emergence of numerous digitally inspired technologies
will play a key role in the future trajectory of inverse problems in SHM. At the forefront, digital
twins have been the source of increasing research and industrial interest in recent years [229].
While the scope of digital twins’ applications spans beyond SHM alone, its basic aim is to
provide information on the current or future state of an asset by combining real-time data, and
a physical/data-driven model offers many potential avenues for engagement with the inverse
problems community. Nonetheless, in specifically considering a classical SHM application, such
as damage localization [230], developments stemming from the inverse community, including,
for example, state estimation [231–233], uncertainty/model error approximation/compensation
[194,234,235], regularization [236] and model reduction [237], have excellent potential for
enriching or enhancing digital twin frameworks.
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As a whole, the future outlook for the integration and advancement of inverse methodologies
in SHM is very bright. Indeed in the past 20 years, we have seen an exponential increase in
high-performance computing and graphical processing unit development and assimilation into
modern civil and mechanical engineering applications [238,239]. Coupled with powerful inverse
frameworks for large-scale problems (e.g. Krylov solvers [240] and distributed computing [241])
and machine learning [242], we can only expect (i) a steady increase in the breadth of the inverse
problems that the SHM community is able to address and (ii) an evolution in innovative
inversion-based approaches to solving increasingly challenging SHM problems.

6. Smart materials and structures
Smart, self-sensing materials have received immense attention in recent decades [243–245]. A
material is said to be self-sensing if it exhibits a property change in response to external
stimuli. These materials are able to intrinsically report on their health or condition in a spatially
continuous manner and with less hardware/instrumentation burden than traditional point-based
sensing technologies (e.g. strain gauges, piezoelectric patches, accelerometers, etc.). In structural
engineering, external stimuli are often mechanical effects such as deformation, damage or loads.
Hence, integrating smart materials into next-generation structures may allow for unprecedented
health monitoring and diagnostics. A discussion on smart materials in structural contexts may
therefore also be considered as a subset of the preceding discussion on SHM (see §5). Nonetheless,
we will treat it as a distinct topic in the forthcoming sections owing to its unique inverse problems.

Although self-sensing is an umbrella term encompassing many different physical effects,
the piezoresistive effect has perhaps received the most attention to date (see recent reviews
[243,246,247]). Piezoresistive materials are so-named because they exhibit a change in electrical
conductivity (or its inverse, resistivity) upon deformation. This means that every point of the
material is capable of relaying information on its mechanical state. Damage such as voids,
ruptures or fractures can also be detected since the removal of material represents a conductivity
loss. But spatially continuous piezoresistive sensing presents two challenges of relevance to
inverse problems: (i) it is not practical to instrument electrodes at every point on a structure, which
means that it is necessary to deduce conductivity distributions from a finite set of measurements,
and (ii) even if we could recover a spatially continuous mapping of the conductivity, electrical
properties are of little consequence to the structural engineer. We would much rather know the
underlying mechanics that give rise to an observed conductivity distribution. We will address
both of these inverse problems. First, however, a brief summary of the physics and piezoresistive
modelling approaches is given. It will be seen later that modelling techniques are essential to
solving inverse problem (ii) above.

(a) Piezoresistive nanocomposites
Many materials intrinsically exhibit piezoresistive properties. For example, carbon fibre-
reinforced polymers (CFRPs) are well known to change conductivity when loaded elastically
[248,249]. Here, however, we will instead focus on materials that have been engineered to be self-
sensing; that is, an additional constituent has been added to the material system without which it
does not exhibit piezoresistivity. This is most commonly done by adding a conductive phase to a
non-conductive matrix such as polymers (including structural polymers such as epoxy vinyl ester
[250], polymeric thin films for use as sensing skins [251], laser-induced graphene inter-layers in
continuous fibre composites [252,253] and even polymer binders in energetic materials [254,255]),
cements [256] or ceramics [257]. Electrical transport is then a consequence of percolation—the
composite conducts electricity when enough fillers have been added to form an electrically
connected network. Because the percolation threshold decreases with aspect ratio, fillers with
ultra-high aspect ratios such as carbon nanotubes (CNTs) are popular. There are considerable
challenges associated with manufacturing CNT-based nanocomposites such as achieving good
dispersion—ultra-small fillers such as CNTs have a tendency to agglomerate, which can degrade
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the mechanical properties of the composite. But manufacturing is outside the scope of this
manuscript and is well covered elsewhere [258,259].

Considerable effort has also been devoted to the development of piezoresistivity models—
computational and/or analytical means of predicting how conductivity changes for a prescribed
strain. These efforts can be broadly categorized as (i) equivalent resistor network models [260–
262], (ii) computational micro-mechanics models [254,263–265], or (iii) homogenized macroscale
models [266–268]. In (i) equivalent resistor network models, high aspect ratio fillers such as
CNTs are represented as either straight or wavy/curved sticks in a micro-domain [260–262].
These sticks are discretized into resistors based on the length, diameter and conductivity of
the fillers, and junctions between nearby fillers are discretized into resistor elements based on
the equivalent resistance felt by an inter-filler tunnelling electron [269]. The conductivity of the
nanocomposite can then be calculated from the overall resistance of the discretized nanofiller
network and the dimensions of the micro-domain. For a given deformation of the micro-domain,
the translation and rotation of the fillers can be calculated by treating them as rigid inclusions
[270]. Post deformation, the conductivity of the micro-domain is recalculated, thereby allowing
piezoresistive properties to be predicted.

Second, (ii) computational micro-mechanics models use computational means to simulate both
phases of the composite—the non-conductive matrix and the conductive fillers [254,263–265].
Because of this, and unlike equivalent resistor network models, computational micro-mechanics
models can incorporate nuanced effects such as nanofiller-to-matrix debonding, nanofiller
deformation, etc. A limitation of this approach is computational expense owing to individual
nanofillers and the enveloping matrix being explicitly simulated. It is therefore difficult to scale
these models to structural levels.

And third, (iii) homogenized macroscale models describe the conductivity of the
nanocomposite as an analytical function of the strain state without simulating individual
fillers. Rather, conductivity/resistivity strain are coupled through analytical functions based
on excluded volume theory [267] or via ‘constitutive’ tensors (note that these are not proper
constitutive relations because conductivity and strain are not energy complements) [268,271,272].
This approach is therefore less computationally expensive than equivalent resistor network and
computational micro-mechanics models. Importantly, homogenized approaches can be readily
integrated with structural analysis tools such as the FEM, thereby allowing for macroscale
piezoresistive analyses. As will be discussed in §6c, this allows for strain recovery via
piezoresistive inversion. Despite these advantages, analytical models suffer from having to make
assumptions regarding average inter-filler spacing, average orientation of nanofillers and the
need for calibration data.

(b) Conductivity imaging via EIT/ERT
As discussed in §5b, conductivity imaging modalities such as EIT (or DC resistivity imaging via
ERT) have been explored for health monitoring in structural materials [247]. EIT is a natural
complement for piezoresistive materials because it allows for the spatial localization of damage
and the mapping of deformation and strain. There are several factors that make the EIT interesting
to pair with self-sensing materials: (i) This combination allows for sub-surface strain imaging.
That is, a myriad of techniques exist for monitoring surface strains such as strain gauges, DIC,
holographic methods, etc. Tools for studying sub-surface strains, however, are much more limited,
often require ionizing radiation and can be costly (e.g. volumetric strains via X-ray digital volume
correlation [273]). (ii) Traditional ‘limitations’ of EIT can be strengths in structural applications.
For example, the simplest implementation of EIT favours spatially smooth solutions. This is
obviously undesirable when imaging discontinuous features with distinct boundaries such as
organs in a living body. Strain fields, however, are often smoothly varying, thereby playing
to EIT’s strengths. And (iii), because piezoresistive materials are engineered, we can leverage our
knowledge of their piezoresistive response to build bounds into the EIT inverse problem. Two
examples of strain imaging via EIT in self-sensing polymeric composites are shown in figure 7.
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Figure 7. Examples of EIT and piezoresistive inversion applied to self-sensing nanocomposites. (a) A soft carbon
nanofibre/polyurethane (CNF/PU) is deformed by rigid, non-conductive indentors [274]. EIT is then used to image the
deformation-induced conductivity changes, and piezoresistive inversion is used to recover the displacement field (multiplied
by a factor of 5 for ease of visibility). (b) A hard CNF/epoxy is loaded in tension with a stress raiser at its centre [275]. EIT is again
used to image the conductivity change. Lastly, piezoresistive inversion is used to recover the underlying displacement field.
With knowledge of thematerial’s elastic properties, strains and stresses can be spatiallymapped. The first principal stress of the
guage section is shown here along with comparison with a traditional FEM solution for validation. (Online version in colour.)

Both examples leverage knowledge of conductivity change bounds to build constraints into the
solution space. Beyond these advantages for structural imaging, the pairing of EIT/ERT with
self-sensing materials may also have keen, as-of-yet unrealized potential for extreme loading
(particularly self-sensing energetic materials [254,255]). That is, it may be illuminating to image
energetic materials as they detonate. However, most prevailing imaging modalities do not have
the temporal resolution to capture these fleeting moments and require hardware that is too
expensive to risk damaging it. EIT, on the other hand, can have ultra-high temporal resolution
(of the order of hundreds of microseconds for optimized systems [276]) and uses only low-
cost hardware (i.e. sacrificing the hardware during a detonation is of virtually no financial
consequence). Thus, there may be much exciting potential for overlap between smart materials +
EIT and extreme loading as described in §4.

There have been many studies on the topic of EIT and piezoresistive materials. A few
representative examples are summarized in this paper, but interested readers are directed to
a recent review for a more in-depth discussion [247]. Some of the first work in this area
made use of self-sensing nanocomposite sensing skins produced by a layer-by-layer fabrication
technique [251,277]. These skins were applied to substrates, and EIT was then used to identify
and spatially localize deleterious effects including mechanical etching, pH exposure, impact
damage and residual strains from impacts. Further on the topic of polymer-based composites,
thin pressure sensors were produced by embedding a non-woven textile modified with CNTs
into a soft elastomer. EIT was then employed to visualize various pressure distributions including
non-uniform distributions [278]. EIT was also recently applied for damage detection in a ceramic-
based composite that was modified with micrometre-sized waste-iron particles [279]. And as
a final representative example, self-sensing cement composites have been produced by spray-
depositing a CNT-modified latex on the aggregate phase. EIT was then successfully used to
localize various damages in the material [280].
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(c) Piezoresistive inversion
Even though solving the EIT inverse problem allows for the spatially continuous visualization
of mechanical effects in these materials, this poses an obvious problem—structural engineers are
generally not interested in conductivity. They would much rather know the spatially varying
components of the strain tensor, stress tensor or precise damage characteristics since these
factors drive structural analyses and health assessments. Recalling also that various macroscale
piezoresistivity models exist as described in §6a, we can formulate another inverse problem
as follows: For a given EIT conductivity distribution (or, more directly, for a given set of
EIT boundary data) and with an accurate model of conductivity–strain or conductivity–amage
coupling for a particular material, can the precise mechanics of the system be recovered?

Both of these piezoresistive inversion problems—strain recovery and damage recovery—
are challenging. The former is challenging because, under ideal circumstances, we seek six
components (in three dimensions) of a strain tensor from a scalar conductivity field. Prospects
can be improved somewhat by instead seeking the displacement field (i.e. three unknowns
in three dimensions) from the conductivity data and making use of reasonable assumptions
(e.g. plane strain and plane stress) where applicable, but the displacements-from-conductivity
inverse problem is nonetheless under-determined. The challenge is exacerbated by the fact
that circumstances are never truly ideal; conductivity and conductivity changes are not exactly
isotropic, and EIT cannot image individual components of a conductivity tensor. Even for
the case of damage imaging, an accurate model of material breakage-induced conductivity
change is needed. For simple nanofiller/matrix phase nanocomposites (i.e. without reinforcing
fibre), material breakage can be treated as a cessation of conductivity. For more complicated
material systems such as nanofiller-modified continuous fibre composites, however, material
breakage-induced conductivity changes must account for factors such as anisotropy and residual
post-damage conductivity due to inter-lamina contact. And even if a suitable damage model is
developed, the inverse solver needs to be capable of reproducing potentially complex damage
shapes that are not readily amenable to parameterization. Both strain and damage recovery are
additionally hampered by the fact that EIT does not produce accurate conductivity distributions
in an absolute sense or a spatial sense.

Despite these challenges, the piezoresistive inversion problem has received some attention.
An initial effort used an analytical inversion framework predicated on iteratively minimizing
the l2-norm of an error vector between a predicted and observed conductivity distribution
[281]. Although this work was entirely computational and limited to simple deformations and
infinitesimal strains, it nonetheless demonstrated that piezoresistive inversion was possible.
The next work in this area used EIT to image strain-induced conductivity changes in a carbon
nanofibre (CNF)-modified polyurethane (PU) composite [274]. Three marbles (i.e. comparatively
rigid non-conductive indentors) were pushed into the CNF/PU as EIT measurements were
taken. A similar analytical approach was used to reproduce the displacement field. Two
important factors differentiated this study—experimental validation of piezoresistive inversion
and successful application to materials undergoing finite strains. Later works looked at using
metaheuristic algorithms for solving the strains-from-conductivity inverse problem in a CNF-
modified epoxy [275,282]. The CNF/epoxy was moulded in the shape of a plate with a hole and
loaded in tension, causing strain concentrations in the vicinity of the hole. Genetic algorithms,
simulated annealing and particle swarm optimization were explored because it was observed
that the analytical formulation failed to converge to the physically correct solution for this more
complex loading state. It was found that genetic algorithms performed the best for this inverse
problem, but all methods compared favourably with DIC experimental validation. Because
epoxy is relatively brittle, these studies were necessarily limited to infinitesimal strains. Despite
the successes of the preceding studies, they were all limited to electro-mechanically isotropic
materials. Translating these capabilities to electro-mechanically anisotropic materials remains a
daunting challenge. Figure 7 summarizes results for strain recovery via piezoresistive inversion.

Some work has also been done for damage recovery via piezoresistive inversion. Recall that a
key challenge with the damage recovery inverse problem is shape parameterization. To that end,
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these preliminary studies have considered relatively simple damage cases. For example, various
machine learning algorithms were used to categorize three damage conditions in a self-sensing
bone cement directly from EIT boundary voltage data [283]. Thus, self-sensing materials also
have overlap with machine learning methods (see §7). Bone cement is poly(methyl methacrylate)
(PMMA) and is used to facilitate robust contact between an othopaedic implant (e.g. a total
joint replacement) and hard bone. Failure of the PMMA interface is often difficult to detect via
radiographic imaging, hence the motivation for alternative diagnostic tools. This clarification
aside, the parameterization was relatively simple in this case—only four distinct states were
possible (three damaged plus one healthy). The combination of EIT, self-sensing PMMA bone
cement and machine learning allowed for correct damage classification with over 90% accuracy.
In another study, image recognition-based machine learning was used to identify, size and
localize through-hole damage to a self-sensing composite plate [284]. The image recognition
algorithm was trained using computationally generated EIT images on a simple square domain
punctured by a random number of randomly sized circular holes. The trained network was able
to adeptly predict through-hole size, location and number from EIT conductivity maps with good
accuracy—likely better accuracy than human interpretation of EIT images. But this again used a
very simple damage parameterization (i.e. needing only to predict hole number, radius and in-
plane coordinates). As a final example, a recent study looked at delamination shaping from EIT
images in CNF-modified glass fibre/epoxy laminates [285]. In this study, delaminations induced
by low-velocity impacts were parameterized as ellipses of unknown major and minor axes and
centred at unknown in-plane coordinates. A genetic algorithm was used to inversely determine
these parameters by minimizing the l1-norm of the difference between experimentally collected
EIT boundary voltage data and boundary voltage data predicted by a computational model of
the damaged domain. Destructive analyses of the post-impacted laminates revealed that the
genetic algorithm-predicted damage state much more closely matched the actual delamination
size and shape than the EIT conductivity images. This third example of damage recovery is
particularly noteworthy because it represents a much more realistic damage state.

In summary, this section has looked at smart, self-sensing materials from the perspective of
structural inverse problems. Two noteworthy inverse problems were discussed—the EIT inverse
problem and the strain/damage recovery problem. The former has been extensively researched
in other fields (e.g. [286]). The latter, however, is much more recent and has only been the subject
of a few precursory studies. Much work remains to be done regarding the inversion of electrical
data to obtain underlying mechanical effects. Nonetheless, it can be seen that the field of smart
materials in structural applications has much potential and cross-cutting overlap with other topics
of this article, including extreme loading, SHM and machine learning.

7. A look forward: machine learning and education
This paper has evidenced the pervasiveness of inverse problems and methodologies used in the
field of structural engineering. Yet, the following remains to question: What is guiding the future
trajectory of inversion in structural engineering? In this section, we examine what we foresee as
the two most influential future areas in addressing this question: machine learning and education.

(a) Machine-learned inversion
Many areas of structural engineering rely heavily on applied mathematics and science—from the
integration of material models within finite-element frameworks to experimental measurement
of structural response excitation. From a broad scientific perspective, there are two paradigms to
research: either (i) the Keplerian paradigm (data driven, obtaining discoveries via data analysis)
or (ii) the Newtonian paradigm (first principles, discovery through fundamental principles) [287].
Without question, structural engineering research uses both principles.

Often, first principles approaches are manifested via partial differential equations (PDEs)
and their analytical or numerical solutions. However, in both research and practice, obtaining
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solutions to PDEs can be infeasible or intractable, for example owing to computational demand,
a dearth in available numerical regimes and/or the ‘curse of dimensionality’ [288]. In such cases
where engineering problems are governed by such PDEs, solving a related inverse problem using
a conventional methodology would also be a dubious task. When faced with this situation, we
are most likely constrained to adopting a Keplerian approach.

Unmistakably, machine learning has provided the science and engineering communities with
a powerful tool for data-driven analysis, prediction, assessment and significantly more. Structural
engineering research has also greatly benefited from machine learning, especially in the areas of
performance assessment [289], SHM [10] and analysis of various structural phenomena [290].
Yet, significantly less attention has been paid to the use of machine learning for solving inverse
problems in structural engineering outside of areas such as SHM and NDE (as identified in §5).

Exemplifying this reality, structural design highly under-uses machine learning and data
science. Design is traditionally associated with an iterative nature, in which various structural
concepts are tested conceptually until a prevailing option is identified which adheres to
constraints initially identified. The nature of this iterative design process has been understood
in the past using positivist, pragmatic and post-modernist epistemologies ranging from Simon’s
‘science of the artificial’ [291], Schön’s ‘reflexive practice’ [292] and Buchanan’s ‘placements
for contextualization’ [293], respectively. The complexities involved in design from satisfying
conflicting demands to exercising appropriate judgements is hence often attributed to being an
innate human skill [56].

However, recent developments successfully solving inverse problems using data-driven
approaches suggest that such methodologies could also be incorporated within structural design
[25]. This challenges the notion that design is an exclusive human ability, a development
which mimics the success of self-driving cars through data-driven approaches [294]. What is
typically considered ‘intuition’ or ‘engineering judgement’ may in fact be recalling ‘data points’,
committed to long-term memory through the process of experience, that are suitable solutions
based on the unique set of constraints one is presented with [291]. Indeed, supervised machine
learning was originally understood to create mapping functions that correlate a set of inputs
(a specific set of constraints for a design situation) with associated outputs (viable structural
solutions) by learning from a given dataset (experience) [295]. We note that this view has
significantly evolved with the onset of deep learning, as well as the use of unsupervised and
reinforcement learning regimes.

We therefore believe that this inverse problem perspective evidences the need for research
on the development of machine learning tools for structural design. Data-driven approaches are
often dismissed because they are ‘black boxes’ which lack a scientific rationale for their outputs.
However, for design, this criticism might be unwarranted, and instead highlights the dogmatic
concentration within academia on exclusively solving forward problems, which, owing to their
well-posed nature, lend themselves to engineering science thinking. Recently, researchers have
started investigating data-driven models. In one example, neural networks and clustering were
applied to form a bridge and navigate the design space and shortlist viable and fitting solutions
[296,297]. Other examples include researchers applying machine learning models to build suitable
structural predictors for conceptual design related to building massing [298].

The former developments are, in our view, only a starting point for the employment of
machine-learned models used in solving inverse problems in structural engineering as a new
horizon of data-driven approaches emerge. Especially for the cases involving intractable forward
problems, model reduction techniques have been promising [13,299–301], but these are either
difficult to design by hand or are restricted by overly simplistic assumptions. Here, data-
driven approaches are a powerful alternative to compensate for modelling errors [194,234,302]
or reducing computational cost of iterative optimization schemes by model approximations
[32,303]. Finally, we note that recent developments in geometric learning extend deep networks
on Euclidean meshes to general meshes, such as finite elements, by a embedding them into
graph structures essentially using the underlying geometry [304,305]. This opens the possibility
to extend many data-driven approaches to complex structural problems.
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(b) Inverse methodology in structural engineering education
Over the last 100 years, engineering education has experienced a number of fundamental shifts: a
shift in focus away from design to engineering science in the 1960s, the rise of outcome-based
accreditation in the UK and USA in the 1990s, along with a re-emphasis of teaching design
through capstone projects in the 2000s [306]. There also is the continued tension between teaching
graduates both the technical knowledge and the interpersonal skills demanded from industry
deemed necessary to become effective designers [35]. To this day, there exists the debate on how
to find the required balance between knowledge-that and knowledge-how as identified in §3 [307].
For civil and structural engineering disciplines, we believe that some of these challenges might
be addressed by communicating the existence of inverse problems, their pervasive occurrences as
shown by the sections above and teaching the various methods and techniques for solving such
problems.

The dominance of engineering science within university curricula today, which primarily
focuses on identifying and solving forward problems, might unintentionally generate the wrong
supposition that all problems in engineering are well posed with idealized assumptions. Without
adequately addressing the existence of inverse problems, and their distinctively qualitative
differences from forward problems, it is easy to mistakenly assume that, for example, structural
design is the application of such ‘forward problems’. However, the idea that engineering is simply
‘putting theory intro practice’ [56] or ‘applied science’ [308] has been strongly argued against
by numerous engineers and philosophers [55,309–311]. The challenge which students face when
dealing with real-world design problems might be accounted for by the fact that, during the
majority of their engineering education, they might lack a conceptual framework to adequately
demarcate design from analysis. Similarly, in order to engage with other promising fields of
structural engineering, such as SHM, blast engineering and smart materials, educating students
on inverse problems is crucial.

Hence, a possible improvement for current civil and structural engineering curricula is
introducing students to the existence of forward and inverse problems and how they relate to
one another and to provide examples where each type of problem arises and how to solve them.
As identified previously, this will also potentially require teaching students a host of new skills,
especially if data-driven models continue to be effective tools for solving inverse problems, as
is the case in SHM and increasingly likely in design. More importantly, especially when taking
into consideration the recent developments in data science ranging from convolutional neural
networks [312], transformers [313] and graph neural networks [314], there exists a vast spectrum
of knowledge and applications we may not even be aware of.

As a matter of fact, in terms of research, we are perhaps faced with a unique situation in
academia today. Although only time will tell, it could be argued that similar to how the ‘invention’
(or discovery) of calculus in the eighteenth century was instrumental in providing us with
the necessary tools for solving forward problems, resulting in material models and PDEs which
allow the creation of complex FEMs, so too might the rise of machine learning and data science,
which are only now starting to gain serious attention in mathematics [287], allow a more rigorous
treatment of solving inverse problems. By realizing the pervasiveness of inverse problems in
structural engineering, but also the fundamental differences from forward problems, there is
potentially a vast, untouched and exciting realm of research which awaits.

8. Conclusion
This article aimed to demonstrate that numerous structural engineering sub-fields may be either
fundamentally or partially viewed as inverse problems. It was shown that this concept is well
accepted in, for example, SHM; however, sub-fields such as structural design are not commonly
(formally) defined as inverse problems. We argue that, by shifting this paradigm in structural
engineering academia and industry, we may collectively capitalize on the rich methodologies and
approaches already established in the inverse problems community. This beneficial relationship
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between structural and inverse communities is expected to pay exponential dividends as new
tools, such as machine-learned models, emerge and develop—offering new opportunities for
solving previously inaccessible, intractable and/or unforeseen structural challenges.
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optic shape sensing. Measurement 128, 119–137. (doi:10.1016/j.measurement.2018.06.034)

122. Di Sante R. 2015 Fibre optic sensors for structural health monitoring of aircraft
composite structures: recent advances and applications. Sensors 15, 18 666–18 713.
(doi:10.3390/s150818666)

123. Cerracchio P, Gherlone M, Di Sciuva M, Tessler A. 2015 A novel approach for displacement
and stress monitoring of sandwich structures based on the inverse finite element method.
Compos. Struct. 127, 69–76. (doi:10.1016/j.compstruct.2015.02.081)

124. Gherlone M, Cerracchio P, Mattone M, Di Sciuva M, Tessler A. 2014 An inverse finite element
method for beam shape sensing: theoretical framework and experimental validation. Smart
Mater. Struct. 23, 045027. (doi:10.1088/0964-1726/23/4/045027)

125. Derkevorkian A, Masri SF, Alvarenga J, Boussalis H, Bakalyar J, Richards WL. 2013 Strain-
based deformation shape-estimation algorithm for control and monitoring applications.
AIAA J. 51, 2231–2240. (doi:10.2514/1.J052215)

126. Weisz-Patrault D, Ehrlacher A, Legrand N. 2013 Evaluation of contact stress during rolling
process, by three dimensional analytical inverse method. Int. J. Solids Struct. 50, 3319–3331.
(doi:10.1016/j.ijsolstr.2013.06.005)

127. Gherlone M, Cerracchio P, Mattone M, Di Sciuva M, Tessler A. 2012 Shape sensing of 3D
frame structures using an inverse finite element method. Int. J. Solids Struct. 49, 3100–3112.
(doi:10.1016/j.ijsolstr.2012.06.009)

128. Tessler A, Spangler JL, Gherlone M, Mattone M, Di Sciuva M. 2011 Real-time characterization
of aerospace structures using onboard strain measurement technologies and inverse finite element
method. Hampton, VA: National Aeronautics and Space Administration VA Langley Research
Center.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1088/1361-6420/aae793
http://dx.doi.org/10.1080/17415977.2010.512661
http://dx.doi.org/10.1016/j.actamat.2010.07.013
http://dx.doi.org/10.1007/s11340-008-9148-y
http://dx.doi.org/10.1016/j.ijsolstr.2006.06.022
http://dx.doi.org/10.1016/j.ijsolstr.2006.08.031
http://dx.doi.org/10.1111/j.1475-1305.2006.00258.x
http://dx.doi.org/10.1088/0266-5611/21/2/R01
http://dx.doi.org/10.1088/0266-5611/20/2/010
http://dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:6(1303
http://dx.doi.org/10.1007/s12065-020-00372-1
http://dx.doi.org/10.1016/j.ymssp.2018.10.041
http://dx.doi.org/10.1016/j.measurement.2018.06.034
http://dx.doi.org/10.3390/s150818666
http://dx.doi.org/10.1016/j.compstruct.2015.02.081
http://dx.doi.org/10.1088/0964-1726/23/4/045027
http://dx.doi.org/10.2514/1.J052215
http://dx.doi.org/10.1016/j.ijsolstr.2013.06.005
http://dx.doi.org/10.1016/j.ijsolstr.2012.06.009


29

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210526

..........................................................

129. Kiesel S, Van Vickle P, Peters KJ, Hassan T, Kowalsky M. 2006 Intrinsic polymer optical
fiber sensors for high-strain applications. In Smart Structures and Materials 2006: Smart Sensor
Monitoring Systems and Applications, vol. 6167, p. 616713. International Society for Optics and
Photonics.

130. Song JH, Lee ET, Eun HC. 2021 Optimal sensor placement through expansion of static
strain measurements to static displacements. Int. J. Distrib. Sens. Netw. 17, 1550147721991712.
(doi:10.1177/1550147721991712)

131. Esposito M, Gherlone M. 2020 Composite wing box deformed-shape reconstruction based on
measured strains: optimization and comparison of existing approaches. Aerosp. Sci. Technol.
99, 105758. (doi:10.1016/j.ast.2020.105758)

132. Ostachowicz W, Soman R, Malinowski P. 2019 Optimization of sensor placement
for structural health monitoring: a review. Struct. Health Monit. 18, 963–988.
(doi:10.1177/1475921719825601)

133. Tenreiro AFG, Lopes AM. 2021 A review of structural health monitoring of bonded
structures using electromechanical impedance spectroscopy. Struct. Health Monit.
(doi:10.1177/1475921721993419)

134. Alessandrini G, Morassi A, Rosset E. 2002 Detecting cavities by electrostatic boundary
measurements. Inverse Prob. 18, 1333. (doi:10.1088/0266-5611/18/5/308)

135. Downey A, D’Alessandro A, Laflamme S, Ubertini F. 2017 Smart bricks for strain
sensing and crack detection in masonry structures. Smart Mater. Struct. 27, 015009.
(doi:10.1088/1361-665X/aa98c2)

136. Sadoughi M, Downey A, Yan J, Hu C, Laflamme S. 2018 Reconstruction of unidirectional
strain maps via iterative signal fusion for mesoscale structures monitored by a sensing skin.
Mech. Syst. Signal Process. 112, 401–416. (doi:10.1016/j.ymssp.2018.04.023)

137. Kong X, Li J, Collins W, Bennett C, Laflamme S, Jo H. 2018 Sensing distortion-induced fatigue
cracks in steel bridges with capacitive skin sensor arrays. Smart Mater. Struct. 27, 115008.
(doi:10.1088/1361-665X/aadbfb)

138. Kong X, Li J, Collins W, Bennett C, Laflamme S, Jo H. 2017 A large-area strain sensing
technology for monitoring fatigue cracks in steel bridges. Smart Mater. Struct. 26, 085024.
(doi:10.1088/1361-665X/aa75ef)

139. Downey A, Laflamme S, Ubertini F. 2016 Reconstruction of in-plane strain maps using
hybrid dense sensor network composed of sensing skin. Meas. Sci. Technol. 27, 124016.
(doi:10.1088/0957-0233/27/12/124016)

140. Voss A, Hosseini P, Pour-Ghaz M, Vauhkonen M, Seppänen A. 2019 Three-dimensional
electrical capacitance tomography – a tool for characterizing moisture transport properties
of cement-based materials. Mater. Des. 181, 107967. (doi:10.1016/j.matdes.2019.107967)

141. Grudzien K, Chaniecki Z, Romanowski A, Sankowski D, Nowakowski J, Niedostatkiewicz
M. 2016 Application of twin-plane ECT sensor for identification of the internal imperfections
inside concrete beams. In 2016 IEEE Int. Instrumentation and Measurement Technology Conf.
Proc., pp. 1–6.

142. Smyl D, Pour-Ghaz M, Seppänen A. 2018 Detection and reconstruction of complex
structural cracking patterns with electrical imaging. NDT & E Int. 99, 123–133.
(doi:10.1016/j.ndteint.2018.06.004)

143. Seppänen A, Hallaji M, Pour-Ghaz M. 2017 A functionally layered sensing skin for
the detection of corrosive elements and cracking. Struct. Health Monit. 16, 215–224.
(doi:10.1177/1475921716670574)

144. Karhunen K, Seppänen A, Lehikoinen A, Monteiro PJM, Kaipio JP. 2010 Electrical
resistance tomography imaging of concrete. Cement Concrete Res. 40, 137–145.
(doi:10.1016/j.cemconres.2009.08.023)

145. Rashetnia R, Hallaji M, Smyl D, Seppänen A, Pour-Ghaz M. 2017 Detection and
localization of changes in two-dimensional temperature distributions by electrical resistance
tomography. Smart Mater. Struct. 26, 115021. (doi:10.1088/1361-665X/aa8f75)

146. Hauptmann A, Smyl D. 2021 Fusing electrical and elasticity imaging. Phil. Trans. R. Soc. A
379, 20200194. (doi:10.1098/rsta.2020.0194)

147. Bao Y, Chen Z, Wei S, Xu Y, Tang Z, Li H. 2019 The state of the art of
data science and engineering in structural health monitoring. Engineering 5, 234–242.
(doi:10.1016/j.eng.2018.11.027)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1177/1550147721991712
http://dx.doi.org/10.1016/j.ast.2020.105758
http://dx.doi.org/10.1177/1475921719825601
https://doi.org/10.1177/1475921721993419
http://dx.doi.org/10.1088/0266-5611/18/5/308
http://dx.doi.org/10.1088/1361-665X/aa98c2
http://dx.doi.org/10.1016/j.ymssp.2018.04.023
http://dx.doi.org/10.1088/1361-665X/aadbfb
http://dx.doi.org/10.1088/1361-665X/aa75ef
http://dx.doi.org/10.1088/0957-0233/27/12/124016
http://dx.doi.org/10.1016/j.matdes.2019.107967
http://dx.doi.org/10.1016/j.ndteint.2018.06.004
http://dx.doi.org/10.1177/1475921716670574
http://dx.doi.org/10.1016/j.cemconres.2009.08.023
http://dx.doi.org/10.1088/1361-665X/aa8f75
http://dx.doi.org/10.1098/rsta.2020.0194
http://dx.doi.org/10.1016/j.eng.2018.11.027


30

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210526

..........................................................

148. Fan X, Li J, Hao H, Ma S. 2018 Identification of minor structural damage based on
electromechanical impedance sensitivity and sparse regularization. J. Aerosp. Eng. 31,
04018061. (doi:10.1061/(ASCE)AS.1943-5525.0000892)

149. Kim J, Wang KW. 2019 Electromechanical impedance-based damage identification
enhancement using bistable and adaptive piezoelectric circuitry. Struct. Health Monit. 18,
1268–1281. (doi:10.1177/1475921718794202)

150. Brownjohn JM. 2007 Structural health monitoring of civil infrastructure. Phil. Trans. R. Soc. A
365, 589–622. (doi:10.1098/rsta.2006.1925)

151. Entezami A, Shariatmadar H. 2019 Structural health monitoring by a new hybrid feature
extraction and dynamic time warping methods under ambient vibration and non-stationary
signals. Measurement 134, 548–568. (doi:10.1016/j.measurement.2018.10.095)

152. Ramos LF, Aguilar R, Lourenço PB, Moreira S. 2013 Dynamic structural health monitoring of
Saint Torcato church. Mech. Syst. Signal Process. 35, 1–15. (doi:10.1016/j.ymssp.2012.09.007)

153. Magalhães F. 2012 Vibration based structural health monitoring of an arch bridge:
from automated OMA to damage detection. Mech. Syst. Signal Process. 28, 212–228.
(doi:10.1016/j.ymssp.2011.06.011)

154. Nagarajaiah S, Yang Y. 2017 Modeling and harnessing sparse and low-rank data structure:
a new paradigm for structural dynamics, identification, damage detection, and health
monitoring. Struct. Control Health Monit. 24, e1851. (doi:10.1002/stc.1851)

155. Koo KY, Brownjohn J, List D, Cole R. 2013 Structural health monitoring of the Tamar
suspension bridge. Struct. Control Health Monit. 20, 609–625. (doi:10.1002/stc.1481)

156. Marcuzzi A, Morassi A. 2010 Dynamic identification of a concrete bridge with orthotropic
plate-type deck. J. Struct. Eng. 136, 586–602. (doi:10.1061/(ASCE)ST.1943-541X.0000146)

157. Pines D, Salvino L. 2006 Structural health monitoring using empirical mode decomposition
and the Hilbert phase. J. Sound Vib. 294, 97–124. (doi:10.1016/j.jsv.2005.10.024)

158. Hong YH, Kim HK, Lee HS. 2010 Reconstruction of dynamic displacement and velocity from
measured accelerations using the variational statement of an inverse problem. J. Sound Vib.
329, 4980–5003. (doi:10.1016/j.jsv.2010.05.016)

159. Wan Z, Li S, Huang Q, Wang T. 2014 Structural response reconstruction based on the modal
superposition method in the presence of closely spaced modes. Mech. Syst. Signal Process. 42,
14–30. (doi:10.1016/j.ymssp.2013.07.007)

160. Paul B, George RC, Mishra SK. 2017 Phase space interrogation of the empirical
response modes for seismically excited structures. Mech. Syst. Signal Process. 91, 250–265.
(doi:10.1016/j.ymssp.2016.12.008)

161. Nichols J, Todd M, Wait J. 2003 Using state space predictive modeling with chaotic
interrogation in detecting joint preload loss in a frame structure experiment. Smart Mater.
Struct. 12, 580. (doi:10.1088/0964-1726/12/4/310)

162. Fernández-Sáez J, Morassi A, Rubio L. 2017 The λ-curves method for crack identification in
beams. Procedia Eng. 199, 1964–1969. (doi:10.1016/j.proeng.2017.09.304)

163. Liu G, Mao Z, Todd M, Huang Z. 2014 Damage assessment with state–space embedding
strategy and singular value decomposition under stochastic excitation. Struct. Health Monit.
13, 131–142. (doi:10.1177/1475921713513973)

164. Yao R, Pakzad SN. 2012 Autoregressive statistical pattern recognition algorithms
for damage detection in civil structures. Mech. Syst. Signal Process. 31, 355–368.
(doi:10.1016/j.ymssp.2012.02.014)

165. Nair KK, Kiremidjian AS, Law KH. 2006 Time series-based damage detection and
localization algorithm with application to the ASCE benchmark structure. J. Sound Vib. 291,
349–368. (doi:10.1016/j.jsv.2005.06.016)

166. Dervilis N, Shi H, Worden K, Cross E. 2016 Exploring environmental and operational
variations in SHM data using heteroscedastic Gaussian processes. In Dynamics of civil
structures, vol. 2, pp. 145–153. New York, NY: Springer.

167. Ramancha MK, Astroza R, Conte JP, Restrepo JI, Todd MD. 2020 Bayesian nonlinear finite
element model updating of a full-scale bridge-column using sequential Monte Carlo. In
Model validation and uncertainty quantification, vol. 3, pp. 389–397. New York, NY: Springer.

168. Wan HP, Ni YQ. 2019 Bayesian multi-task learning methodology for reconstruction
of structural health monitoring data. Struct. Health Monit. 18, 1282–1309.
(doi:10.1177/1475921718794953)

169. Wan HP, Ren WX. 2016 Stochastic model updating utilizing Bayesian approach and Gaussian
process model. Mech. Syst. Signal Process. 70, 245–268. (doi:10.1016/j.ymssp.2015.08.011)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000892
http://dx.doi.org/10.1177/1475921718794202
http://dx.doi.org/10.1098/rsta.2006.1925
http://dx.doi.org/10.1016/j.measurement.2018.10.095
http://dx.doi.org/10.1016/j.ymssp.2012.09.007
http://dx.doi.org/10.1016/j.ymssp.2011.06.011
http://dx.doi.org/10.1002/stc.1851
http://dx.doi.org/10.1002/stc.1481
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000146
http://dx.doi.org/10.1016/j.jsv.2005.10.024
http://dx.doi.org/10.1016/j.jsv.2010.05.016
http://dx.doi.org/10.1016/j.ymssp.2013.07.007
http://dx.doi.org/10.1016/j.ymssp.2016.12.008
http://dx.doi.org/10.1088/0964-1726/12/4/310
https://doi.org/10.1016/j.proeng.2017.09.304
http://dx.doi.org/10.1177/1475921713513973
http://dx.doi.org/10.1016/j.ymssp.2012.02.014
http://dx.doi.org/10.1016/j.jsv.2005.06.016
http://dx.doi.org/10.1177/1475921718794953
http://dx.doi.org/10.1016/j.ymssp.2015.08.011


31

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210526

..........................................................

170. Mao Z, Todd M. 2013 Statistical modeling of frequency response function estimation for
uncertainty quantification. Mech. Syst. Signal Process. 38, 333–345. (doi:10.1016/j.ymssp.
2013.01.021)

171. Cantero-Chinchilla S, Beck JL, Chiachío M, Chiachío J, Chronopoulos D, Jones A.
2020 Optimal sensor and actuator placement for structural health monitoring via
an efficient convex cost-benefit optimization. Mech. Syst. Signal Process. 144, 106901.
(doi:10.1016/j.ymssp.2020.106901)

172. Capellari G, Chatzi E, Mariani S. 2018 Cost–benefit optimization of structural health
monitoring sensor networks. Sensors 18, 2174. (doi:10.3390/s18072174)

173. Yi TH, Li HN, Wang CW. 2016 Multiaxial sensor placement optimization in structural
health monitoring using distributed Wolf algorithm. Struct. Control Health Monit. 23, 719–734.
(doi:10.1002/stc.1806)

174. Sun H, Büyüköztürk O. 2015 Optimal sensor placement in structural health monitoring
using discrete optimization. Smart Mater. Struct. 24, 125034. (doi:10.1088/0964-1726/
24/12/125034)

175. Bhuiyan MZA, Wang G, Cao J, Wu J. 2014 Sensor placement with multiple objectives
for structural health monitoring. ACM Trans. Sensor Netw. (TOSN) 10, 1–45. (doi:10.1145/
2533669)

176. Yi TH, Li HN, Zhang XD. 2012 A modified monkey algorithm for optimal sensor
placement in structural health monitoring. Smart Mater. Struct. 21, 105033. (doi:10.1088/
0964-1726/21/10/105033)

177. Yi TH, Li HN, Gu M. 2011 Optimal sensor placement for structural health monitoring
based on multiple optimization strategies. Struct. Des. Tall Spec. Build. 20, 881–900.
(doi:10.1002/tal.712)

178. Guo H, Zhang L, Zhang L, Zhou J. 2004 Optimal placement of sensors for structural
health monitoring using improved genetic algorithms. Smart Mater. Struct. 13, 528.
(doi:10.1088/0964-1726/13/3/011)

179. Cantero-Chinchilla S, Aranguren G, Royo JM, Chiachío M, Etxaniz J, Calvo-Echenique A.
2021 Structural health monitoring using ultrasonic guided-waves and the degree of health
index. Sensors 21, 993. (doi:10.3390/s21030993)

180. Li M, Kefal A, Cerik B, Oterkus E. 2019 Structural health monitoring of submarine pressure
hull using inverse finite element method. In Trends in the analysis and design of marine
structures: Proc. 7th Int. Conf. on Marine Structures (MARSTRUCT 2019, Dubrovnik, Croatia,
6–8 May 2019), p. 293. New York, NY: CRC Press.

181. Shen Y. 2014 Structural health monitoring using linear and nonlinear ultrasonic guided
waves. PhD thesis. University of South Carolina, Columbia, SC, USA.

182. Srivastava A, Lanza di Scalea F. 2010 Quantitative structural health monitoring by ultrasonic
guided waves. J. Eng. Mech. 136, 937–944. (doi:10.1061/(ASCE)EM.1943-7889.0000136)

183. Mitra M, Gopalakrishnan S. 2016 Guided wave based structural health monitoring: a review.
Smart Mater. Struct. 25, 053001. (doi:10.1088/0964-1726/25/5/053001)

184. Eiras J, Kundu T, Popovics JS, Monzó J, Soriano L, Payá J. 2014 Evaluation of frost damage
in cement-based materials by a nonlinear elastic wave technique. In Health monitoring of
structural and biological systems 2014, vol. 9064, p. 90641G. International Society for Optics
and Photonics.

185. Giurgiutiu V. 2005 Tuned Lamb wave excitation and detection with piezoelectric wafer
active sensors for structural health monitoring. J. Intell. Mater. Syst. Struct. 16, 291–305.
(doi:10.1177/1045389X05050106)

186. Shin SW, Yun CB, Popovics JS, Kim JH. 2007 Improved Rayleigh wave velocity
measurement for nondestructive early-age concrete monitoring. Res. Nondestr. Eval. 18,
45–68. (doi:10.1080/09349840601128762)

187. Xu B, Giurgiutiu V. 2007 Single mode tuning effects on Lamb wave time reversal with
piezoelectric wafer active sensors for structural health monitoring. J. Nondestr. Eval. 26,
123–134. (doi:10.1007/s10921-007-0027-8)

188. Wang CH, Rose JT, Chang FK. 2004 A synthetic time-reversal imaging method for structural
health monitoring. Smart Mater. Struct. 13, 415. (doi:10.1088/0964-1726/13/2/020)

189. Moll J, Fritzen CP. 2010 Time-varying inverse filtering for high resolution imaging with
ultrasonic guided waves. In 10th European Conf. on Non-Destructive Testing, pp. 1–10.

190. He J, Rocha DC, Sava P. 2020 Guided wave tomography based on least-squares reverse-time
migration. Struct. Health Monit. 19, 1237–1249. (doi:10.1177/1475921719880296)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1016/j.ymssp.2013.01.021
http://dx.doi.org/10.1016/j.ymssp.2020.106901
http://dx.doi.org/10.3390/s18072174
https://doi.org/10.1002/stc.1806
http://dx.doi.org/10.1088/0964-1726/24/12/125034
http://dx.doi.org/10.1145/2533669
http://dx.doi.org/10.1088/0964-1726/21/10/105033
http://dx.doi.org/10.1002/tal.712
http://dx.doi.org/10.1088/0964-1726/13/3/011
http://dx.doi.org/10.3390/s21030993
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000136
http://dx.doi.org/10.1088/0964-1726/25/5/053001
http://dx.doi.org/10.1177/1045389X05050106
http://dx.doi.org/10.1080/09349840601128762
http://dx.doi.org/10.1007/s10921-007-0027-8
http://dx.doi.org/10.1088/0964-1726/13/2/020
http://dx.doi.org/10.1177/1475921719880296


32

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210526

..........................................................

191. He J, Leckey CA, Leser PE, Leser WP. 2019 Multi-mode reverse time migration
damage imaging using ultrasonic guided waves. Ultrasonics 94, 319–331.
(doi:10.1016/j.ultras.2018.08.005)

192. Zhao M, Zhou W, Huang Y, Li H. 2020 Sparse Bayesian learning approach for propagation
distance recognition and damage localization in plate-like structures using guided waves.
Struct. Health Monit. 20, 1475921720902277. (doi:10.1177/1475921720902277)

193. Lu X, Lu M, Zhou LM, Su Z, Cheng L, Ye L, Meng G. 2010 Evaluation of welding damage
in welded tubular steel structures using guided waves and a probability-based imaging
approach. Smart Mater. Struct. 20, 015018. (doi:10.1088/0964-1726/20/1/015018)

194. Smyl D, Tallman TN, Black JA, Hauptmann A, Liu D. 2021 Learning and correcting non-
Gaussian model errors. J. Comput. Phys. 432, 110152. (doi:10.1016/j.jcp.2021.110152)

195. Yuan FG, Zargar SA, Chen Q, Wang S. 2020 Machine learning for structural health
monitoring: challenges and opportunities. In Sensors and smart structures technologies for civil,
mechanical, and aerospace systems 2020, vol. 11379, p. 1137903. International Society for Optics
and Photonics.

196. Finotti RP, Cury AA, Barbosa FdS. 2019 An SHM approach using machine learning and
statistical indicators extracted from raw dynamic measurements. Latin Am. J. Solids Struct.
16, 1–17. (doi:10.1590/1679-78254942)

197. Khuc T, Catbas FN. 2017 Completely contactless structural health monitoring of real-life
structures using cameras and computer vision. Struct. Control Health Monit. 24, e1852.
(doi:10.1002/stc.1852)

198. Feng MQ, Fukuda Y, Feng D, Mizuta M. 2015 Nontarget vision sensor for
remote measurement of bridge dynamic response. J. Bridge Eng. 20, 04015023.
(doi:10.1061/(ASCE)BE.1943-5592.0000747)

199. Luo L, Feng MQ, Wu ZY. 2018 Robust vision sensor for multi-point displacement monitoring
of bridges in the field. Eng. Struct. 163, 255–266. (doi:10.1016/j.engstruct.2018.02.014)

200. Yoon H, Elanwar H, Choi H, Golparvar-Fard M, Spencer Jr BF. 2016 Target-free approach for
vision-based structural system identification using consumer-grade cameras. Struct. Control
Health Monit. 23, 1405–1416. (doi:10.1002/stc.1850)

201. Yang Y, Dorn C, Mancini T, Talken Z, Kenyon G, Farrar C, Mascareñas D. 2017
Blind identification of full-field vibration modes from video measurements with
phase-based video motion magnification. Mech. Syst. Signal Process. 85, 567–590.
(doi:10.1016/j.ymssp.2016.08.041)

202. Dong CZ, Bas S, Catbas FN. 2019 A completely non-contact recognition system for bridge
unit influence line using portable cameras and computer vision. Smart Struct. Syst. 24, 617–
630. (doi:10.12989/sss.2019.24.5.617)

203. Jana D, Nagarajaiah S. 2021 Computer vision-based real-time cable tension estimation in
Dubrovnik cable-stayed bridge using moving handheld video camera. Struct. Control Health
Monit. 28, e2713. (doi:10.1002/stc.2713)

204. Liu Z, Cao Y, Wang Y, Wang W. 2019 Computer vision-based concrete crack
detection using U-net fully convolutional networks. Autom. Constru. 104, 129–139.
(doi:10.1016/j.autcon.2019.04.005)

205. Gao Y, Mosalam KM. 2018 Deep transfer learning for image-based structural damage
recognition. Comput.-Aided Civil Infrastructure Eng. 33, 748–768. (doi:10.1111/mice.12363)

206. Shen HK, Chen PH, Chang LM. 2018 Human-visual-perception-like intensity recognition
for color rust images based on artificial neural network. Autom. Constru. 90, 178–187.
(doi:10.1016/j.autcon.2018.02.023)

207. Pauly L, Hogg D, Fuentes R, Peel H. 2017 Deeper networks for pavement crack detection. In
Proc. 34th ISARC, pp. 479–485. IAARC.

208. Cha YJ, Choi W, Büyüköztürk O. 2017 Deep learning-based crack damage detection
using convolutional neural networks. Comput.-Aided Civil Infrastructure Eng. 32, 361–378.
(doi:10.1111/mice.12263)

209. Dung CV. 2019 Autonomous concrete crack detection using deep fully convolutional neural
network. Autom. Constru. 99, 52–58. (doi:10.1016/j.autcon.2018.11.028)

210. Chen FC, Jahanshahi MR. 2017 NB-CNN: deep learning-based crack detection using
convolutional neural network and naïve Bayes data fusion. IEEE Trans. Ind. Electron. 65,
4392–4400. (doi:10.1109/TIE.2017.2764844)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1016/j.ultras.2018.08.005
http://dx.doi.org/10.1177/1475921720902277
http://dx.doi.org/10.1088/0964-1726/20/1/015018
http://dx.doi.org/10.1016/j.jcp.2021.110152
https://doi.org/10.1590/1679-78254942
http://dx.doi.org/10.1002/stc.1852
http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000747
http://dx.doi.org/10.1016/j.engstruct.2018.02.014
http://dx.doi.org/10.1002/stc.1850
http://dx.doi.org/10.1016/j.ymssp.2016.08.041
http://dx.doi.org/10.12989/sss.2019.24.5.617
http://dx.doi.org/10.1002/stc.2713
http://dx.doi.org/10.1016/j.autcon.2019.04.005
https://doi.org/10.1111/mice.12363
http://dx.doi.org/10.1016/j.autcon.2018.02.023
https://doi.org/10.1111/mice.12263
http://dx.doi.org/10.1016/j.autcon.2018.11.028
https://doi.org/10.1109/TIE.2017.2764844


33

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210526

..........................................................

211. Cha YJ, You K, Choi W. 2016 Vision-based detection of loosened bolts using
the Hough transform and support vector machines. Autom. Constru. 71, 181–188.
(doi:10.1016/j.autcon.2016.06.008)

212. Huynh TC, Park JH, Jung HJ, Kim JT. 2019 Quasi-autonomous bolt-loosening detection
method using vision-based deep learning and image processing. Autom. Constru. 105, 102844.
(doi:10.1016/j.autcon.2019.102844)

213. Cha YJ, Choi W, Suh G, Mahmoudkhani S, Büyüköztürk O. 2018 Autonomous structural
visual inspection using region-based deep learning for detecting multiple damage types.
Comput.-Aided Civil Infrastruct. Eng. 33, 731–747. (doi:10.1111/mice.12334)

214. Kong X, Li J. 2019 Non-contact fatigue crack detection in civil infrastructure
through image overlapping and crack breathing sensing. Autom. Constru. 99, 125–139.
(doi:10.1016/j.autcon.2018.12.011)

215. Kong X, Li J. 2018 Image registration-based bolt loosening detection of steel joints. Sensors
18, 1000. (doi:10.3390/s18041000)

216. Dominici D, Alicandro M, Massimi V. 2017 UAV photogrammetry in the post-
earthquake scenario: case studies in L’Aquila. Geomatics, Natural Hazards Risk 8, 87–103.
(doi:10.1080/19475705.2016.1176605)

217. Choi J, Yeum CM, Dyke SJ, Jahanshahi MR. 2018 Computer-aided approach for rapid post-
event visual evaluation of a building facade. Sensors 18, 3017. (doi:10.3390/s18093017)

218. Buffi G, Manciola P, Grassi S, Barberini M, Gambi A. 2017 Survey of the Ridracoli Dam:
UAV-based photogrammetry and traditional topographic techniques in the inspection
of vertical structures. Geomatics, Nat. Hazards Risk 8, 1562–1579. (doi:10.1080/19475705.
2017.1362039)

219. Khaloo A, Lattanzi D, Jachimowicz A, Devaney C. 2018 Utilizing UAV and 3D
computer vision for visual inspection of a large gravity dam. Front. Built Environ. 4, 31.
(doi:10.3389/fbuil.2018.00031)

220. Özaslan T, Shen S, Mulgaonkar Y, Michael N, Kumar V. 2015 Inspection of penstocks and
featureless tunnel-like environments using micro UAVs. In Field and service robotics, pp. 123–
136. New York, NY: Springer.
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