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On the unreasonable effectiveness of CNNs
Andreas Hauptmann, Member, IEEE, and Jonas Adler

Abstract—Deep learning methods using convolutional neural
networks (CNN) have been successfully applied to virtually all
imaging problems, and particularly in image reconstruction tasks
with ill-posed and complicated imaging models. In an attempt to
put upper bounds on the capability of baseline CNNs for solving
image-to-image problems we applied a widely used standard off-
the-shelf network architecture (U-Net) to the “inverse problem”
of XOR decryption from noisy data and show acceptable results.

I. INTRODUCTION

An ever-increasing amount of data and emerging methods in
deep learning have led to considerable advances in numerous
computer vision tasks, such as object detection and classifica-
tion. The underlying methodology is based on convolutional
neural networks (CNN), which can be understood as a multi-
layered feature extraction from neighbourhood relations in the
input image.

The subclass of methods that we consider here are image-
to-image networks and in particular, we are motivated by
their immense impact in inverse problems and biomedical
imaging applications. This success is partly driven by the
availability of large amounts of data and the tendency to
open-source this information for other scientists, but also
by the ability to learn visually appealing and data specific
representations. Consequently, we are now experiencing a
transition to utilise tools from data science to harness the
potential of large data, which is in stark contrast to classical
deterministic algorithms that only operated with few data. For
instance, whereas in tomographic imaging meticulously tuned
algorithms were developed for reconstructions, we can now
simply train a network to recover the important features in a
tomographic image, if sufficient data is available.

This transition is marked in parts due to the success of
widely established convolutional neural network architectures,
such as the U-net which was initially used for semantic seg-
mentation [1], but has since been utilised for various imaging
tasks as an essential processing step to improve image quality.
For instance, to remove noise in low-dose CT images [2], [3]
or artefacts from undersampled magnetic resonance imaging
[4], [5], and as essential part in the pipeline for automated
diagnosis [6].

However, it is not unusual to propose a new method
using different network designs [7], [8], or intertwine learned
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components with explicit hand-designed operations [9]–[11].
These methods generally provide impressive results, but it is
often claimed without computational proof that the problem
under consideration is too special for the application of basic
network architectures. We believe, this is in part due to the
common understanding that the problem has to be sufficiently
well-behaved for standard CNNs to be applicable [12]. For ex-
ample, the use of convolutions would imply that the underlying
problem should be translation equivariant1, we refer to [13] for
a discussion in the context of inverse problems. Furthermore,
the continuity and almost everywhere differentiability of the
neural networks seemingly implies that the functions they
approximate should at least be continuous [14].

These somewhat contradictory trains of thought lead us to
our question: are there really any image-to-image tasks that
can not be solved reasonably well with a standard CNN and
sufficient data? Our main result is that even for seemingly
ridiculous image-to-image problems standard CNNs basically
always perform acceptably. In particular we’ll show that an
off-the-shelf U-Net can be trained to invert XOR encryption,
a function which is everywhere discontinuous and not transla-
tion equivariant. The results hold even in the noisy case where
standard decryption fails.

II. EXPERIMENTAL SETUP

We shall consider the inverse problem of inverting XOR
encryption. Our forward operator is hence the XOR operation
with a fixed byte string and the implementation we use is
based on running the advanced encryption standard (AES) [15]
in Counter mode (CTR) [16], a block cipher with randomly
generated initialisation (iv) and key, here 128 bit long and
fixed for all examples. The encryption process first generates
a string of bytes using the initialisation and key and then takes
the input, represented as a sequence of bytes, applies a bitwise
XOR of the input and byte string, and then returns a byte
array of the same size, called the ciphertext. The recipient of
the ciphertext can then use the key in order to recover the
input. For obvious reasons, the process has been designed to
be highly discontinuous in the input in order to thwart attackers
from reading the text. To make the problem even harder, we
also study the case with noisy observations.

As with any standard machine learning method for inverse
problems, the recovery of the encrypted images can be formu-
lated as a basic supervised learning problem. That is, given a
set of ground-truth images {fi} with corresponding measured
data {gi}, we then formulate a network Λθ with parameters
θ to recover the ground-truth from the encrypted image, such

1A function is translation equivariant if translating the input and then ap-
plying the function is equivalent to applying the function and then translating
the output. All convolutions satisfy this property.
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Fig. 1. Experimental setup for XOR encryption of natural images and decryption using a standard off-the-shelf deep convolutional neural network. The
network is trained using known cipherimages (top-left images, 3 out of 12 channels shown here) ⇔ plaintext (bottom left) pairs. Reconstructed test images
after successful training (bottom right) exhibit a loss of resolution and detail, but retain identifying characteristics.

that Λθ(gi) ≈ fi. This corresponds to the standard procedure
in image processing, where gi represents a corrupted image,
e.g. obtained from undersampled data and/or under high noise
or even, as in our case, from bit-wise encoding. The training
is then given as optimisation problem to find an optimal set
of parameters θ∗ by minimising a loss functions such as

θ∗ = arg min
θ

1

N

N∑
i=1

‖Λθ(gi)− fi‖22. (1)

For training, we use the standardised STL-10 dataset [17],
a set of 100,000 natural 96x96 pixel colour images (bottom-
left of Fig. 1). The images we seek to encode are RGB
images, which we normalised to the range [0, 1] and then
stored as single precision floating point numbers, three per
pixel (one per colour channel). We encrypt the raw byte-
representation of the image using AES in CTR mode with
the fixed 128 bit key and fixed iv. As we aim to establish an
image-to-image problem, we need to reinterpret the ciphertext
as an image and make it admissible as input to the U-Net.
To achieve this, we first converted the encryption output to

uint8, then normalised similarly to the ground-truth images
and reformatted to a 96×96 image with resulting 12 channels
in single precision floats, which we call the call cipherimages,
see top-left of Fig. 1 for examples. In the noisy setting we add
1% pixel- and channel-wise Gaussian noise.

We split the data into 90,000 training images and 10,000
images for testing. The corresponding encrypted images were
then computed for both sets with the same settings and noise
added. A standard U-net architecture as originally proposed
[1], with a minor modification for consistency in image size
and linearly rescaling the inputs to [0, 1), was used. The
training was done by minimising Eq. (1) and performed with
standard choices on the hyperparameters, using the Adam
optimiser, batch size of 32, learning rate 2·10−3 and 35 epochs.

The XOR forward operator has a closed form inverse and
this inverse serves as our decryption baseline. In the noisy case
we first round to the closest byte. We also consider another
trivial baseline to see if we have actually learned decryption
and not just some statistics about the dataset. Here, we note
that the minimise of Eq. (1) if gi is uninformative of fi is the
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Fig. 2. Reconstruction from corrupted data. We added 1% noise to the
cipherimages (Middle, shown 3 out of 12 channels). Resulting reconstructions
on the right are with the XOR decryption with known key (top) and learned
reconstruction (bottom).

mean of the training set, f̄ = 1
N

∑N
i=1 fi and use this as the

reconstruction for any input.

III. DISCUSSION OF RESULTS

TABLE I
QUANTITATIVE VALUES FOR THE RECOVERED TEST IMAGES. MEAN

VALUES FOR 10,000 TEST SAMPLES.

No noise 1% Noise
PSNR SSIM PSNR SSIM

U-NET 18.0 0.62 17.6 0.57
DECRYPTION +∞ 1.00 −∞ 0.00
MEAN OF TRAIN SET 11.8 0.16 11.8 0.16

To our surprise, the network can successfully establish
a relation between the cipherimages and the original input
images. A set of such reconstructed images by the network
from the test set is shown in Fig. 1. As one can see, the
reconstructed images suffer from a loss of resolution and some
colours are not correctly recovered. Nevertheless, we can say
that the reconstruction quality is well beyond our expectation.

This qualitative observation is also supported in terms of
quantitative values, as the mean PSNR of all 10,000 recon-
structed test images after training was 18dB and a SSIM
of 0.62, as shown in Table I. In this noise free setting the
baseline decryption method performs perfectly and obtains
an infinite PSNR, as expected. In the noisy setting with the
learned decryption we observe a minor deterioration in mean
PSNR of 0.4dB and 0.05 in SSIM, whereas decryption from
the corrupted data is impossible, giving a PSNR of negative
infinity. We illustrate this in Fig. 2. Additionally, the simple
mean baseline gives notably worse results, indicating that a
nontrivial relation has indeed been successfully established.

As for limitations of this study, we note that while our en-
cryption operation is different for each pixel (due to the XOR
key being different) and hence not translation equivariant,
there is no connection between pixels. We also tried running
AES in Cipher Block Chaining (CBC) mode, which introduces
a strong dependency, but were unable to learn anything useful
in this setting. This was also the case for lower-dimensional
training data such as the MNIST dataset.

Finally, we reiterate that a safe encryption uses varying keys
as well as a random iv. If these are fixed, the encryption is
deterministic and consequently not safe. This work does not
show that supervised learning can crack encryption, what it
does show is that supervised learning can solve problems with
terrible numerical properties.

IV. CONCLUSIONS

Our results indicate, that against ones intuition, an off-
the-shelf CNN can successfully learn a relation even in this
extremely challenging setting. We believe there are at least
two important takeaways from this observation that should be
kept in mind when solving image-to-image problems:

• With enough data, basic CNNs such as a U-Net, always
work on image-to-image problems.

• Training a simple CNN should always be used as a strong
baseline for any newly proposed method, regardless of
how unreasonable it seems.
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