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Abstract
Amultitude of imaging and vision tasks have seen recently a major transformation by deep learning methods and in particular
by the application of convolutional neural networks. These methods achieve impressive results, even for applications where it
is not apparent that convolutions are suited to capture the underlying physics. In this work, we develop a network architecture
based on nonlinear diffusion processes, named DiffNet. By design, we obtain a nonlinear network architecture that is well
suited for diffusion-related problems in imaging. Furthermore, the performed updates are explicit, by which we obtain better
interpretability and generalisability compared to classical convolutional neural network architectures. The performance of
DiffNet is tested on the inverse problem of nonlinear diffusion with the Perona–Malik filter on the STL-10 image dataset. We
obtain competitive results to the established U-Net architecture, with a fraction of parameters and necessary training data.

Keywords Neural networks · Deep learning · Partial differential equations · Nonlinear diffusion · Image flow · Nonlinear
inverse problems

1 Introduction

We are currently undergoing a paradigm shift in imaging and
vision tasks fromclassical analytic to learning anddata-based
methods. In particular, this shift is driven by deep learning
and the application of convolutional neural networks (CNN).
Whereas highly superior results are obtained, interpretability
and analysis of the involved processes is a challenging and
ongoing task [20,24].

In a general setting, deep learning proposes to develop a
nonlinear mapping AΘ : X → Y between elements of two
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spaces X , Y (whichmay be the same) parametrised by a finite
set of parameters Θ , which need to be learned:

g = AΘ f (1.1)

This learning-based approach is in marked contrast to classi-
calmethodswith a physical interpretation of the process (1.1)
for both computational modelling of data given a physical
model (which we call a forward problem) and the estimation
of parameters of a physical model from measured, usually
noisy, data (whichwe call an inverse problem). Several recent
papers have discussed the application of deep learning in both
forward [23,31,36,37,40,41] and inverse [21,22,29,42–44]
problems. Several questions become essential when apply-
ing learned models in such cases including:

– how and to what extent can learned models replace phys-
ical models?

– how do learned models depend on training protocols and
how well do they generalise?

– what are appropriate architectures for the learnedmodels,
what is the size of the parameter set Θ that needs to be
learned, and how can these be interpreted?

In this paper, we aim to answer some of these questions,
by taking a few steps back and looking at an analytic
motivation for network architectures. Here, we consider in
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particular mappings between images u in dimension d, i.e.
X = Y = L p(Ω ⊂ R

d), for which there exist several widely
used linear and nonlinear mappings A defined by differen-
tial and/or integral operators. For example, a general linear
integral transform such as

uobs(x) = (Autrue)(x) =
∫

Ω

K (x, y)utrue(y)dy (1.2)

includes stationary convolution as a special case if the kernel
is translation invariant, i.e. K (x, y) ≡ K (x −y). If the kernel
depends on the image, i.e. K (x, y) ≡ K (x, y; u), then (1.2)
becomes nonlinear. Alternatively, the forward mapping may
be modelled as the end-point of an evolution process which
becomes nonlinear if the kernel depends on the image state
K (x, y, t) ≡ K (x, y; u(t)); see Eq. (2.7) below for a specific
example.

Furthermore, a widely studied class of image mappings
is characterised by defining the evolution through a partial
differential equation (PDE) where flow is generated by the
local structure of u [25,34,38], such that

ut = F

(
u,∇u,

∂2u

∂xi∂x j
, . . .

)
. (1.3)

These problems in general do not admit an explicit integral
transform representation and are solved instead by numeri-
cal techniques, but since they depend on a physical model,
described by the underlying PDE, they can be analysed and
understood thoroughly [39]. This also includes a statistical
interpretation [19] as hyperpriors in a Bayesian setting [5].
Furthermore, models like (1.3) can be used to develop priors
for nonlinear inverse problems, such as optical tomography
[8,15] and electrical impedance tomography [13].

Motivated by the success of these analytic methods to
imaging problems in the past, we propose to combine phys-
ical models with data-driven methods to formulate network
architectures for solving both forward and inverse problems
that take the underlying physics into account. We limit our-
selves to the case where the physical model is of diffusion
type, although more general models could be considered in
the future. The leading incentive is given by the observation
that the underlying processes in a neural network do not need
to be limited to convolutions.

Similar ideas of combining partial differential equations
with deep learning have been considered earlier. For instance,
this is done by learning of a PDE via optimal control
[26], as well as deriving CNN architectures motivated by
diffusionprocesses [6], deriving stable architectures bydraw-
ing connections to ordinary differential equations [11] and
constraining CNNs [33] by the interpretation as a partial
differential equation. ‘PDE-NET 2.0’ [27,28] is a recent
example of a network architecture designed to learn dynamic

PDEs assumed to be of the form (1.3) where the function
F is learned as a polynomial in convolution filters with
appropriate vanishing moments. Another interpretation of
our approach can be seen as introducing the imaging model
into the network architecture; such approaches have led to
a major improvement in reconstruction quality for tomo-
graphic problems [2,14,17].

This paper is structured as follows. In Sect. 2, we review
some theoretical aspects of diffusion processes for imaging
and the inversion based on theory of partial differential equa-
tions and differential operators. We formulate the underlying
conjecture for our network architecture that the diffusion pro-
cess can be inverted by a set of local non-stationary filters. In
the following,we introduce the notion of continuum networks
in Sect. 3 and formally define the underlying layer operator
needed to formulate network architectures in a continuum
setting.Wedrawconnections to the established convolutional
neural networks in our continuum setting. We then proceed
to define the proposed layer operators for diffusion networks
in Sect. 4 and derive an implementable architecture by dis-
cretising the involved differential operator. In particular, we
derive a network architecture that is capable of reproduc-
ing inverse filtering with regularisation for the inversion of
nonlinear diffusion processes. We examine the reconstruc-
tion quality of the proposed DiffNet in following Sect. 5 for
an illustrative example of deconvolution and the challeng-
ing inverse problem of inverting nonlinear diffusion with
the Perona–Malik filter. We achieve results that are com-
petitive to popular CNN architectures with a fraction of the
amount of parameters and training data. Furthermore, all
computed components that are involved in the update process
are interpretable and can be analysed empirically. In Sect. 6,
we examine the generalisablity of the proposed network with
respect to necessary training data. Additionally, we empir-
ically analyse the obtained filters and test our underlying
conjecture. Section7 presents some conclusions and further
ideas.

2 Diffusion and Flow Processes for Imaging

In the following, wewant to explore the possibility to include
a nonlinear process as an underlyingmodel for network archi-
tectures. Specifically, the motivation for this study is given
by diffusion processes that have been widely used in imaging
and vision. Let us consider here the general diffusion process
in R

d , then on a fixed time interval with some diffusivity γ ,
to be defined later, we have

{
∂t u = ∇ · (γ∇u) in Rd × (0, T ]
u(x, 0) = u0(x) in Rd .

(2.1)
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Remark 1 When considering bounded domains Ω ⊂ R
d ,

we will augment (2.1) with boundary conditions on ∂Ω . We
return to this point in Sect. 4.

In the following, we denote the spatial derivative by

(L(γ )u) (x, t) := ∇ · (γ∇u(x, t)). (2.2)

Let us first consider the isotropic diffusion case, then the
differential operator becomes the spatial Laplacian L(γ =
1) = �. In this case, the solution of (2.1) at time T is given
by convolution with a Green’s function

uT (x) = G√
2T (x) ∗ u0(x) (2.3)

where G√
2T = 1

(4πT )d/2 exp
[
− x2

4T

]
in dimension d and we

recall that the convolution of two functions f , g ∈ L1(Rd)

is defined by

(g ∗ f )(x) =
∫
Rd

g(x − y) f (y)dy. (2.4)

Definition 1 TheGreen’s operator is definedwith theGreen’s
function as its kernel

G 1
2 σ 2u :=

∫
Rd

u(x)

(2πσ 2)d/2 exp

[
−|x − y|2

2σ 2

]
dy (2.5)

by which we have

uT (x) = GTu0(x)

In the general case for ananisotropic diffusion flow (ADF),
we are interested in a scalardiffusivity γ ∈ [0, 1] that depends
on u itself, i.e.

∂t u = ∇ · (γ (u)∇u) (2.6)

This is now an example of a nonlinear evolution

uT (x) = KT u0 =
∫ T

0

∫
Rd

KADF(x, y, u(y, t))u0(y)dydt

(2.7)

where KADF(x, y, u(x, t)) is nowanon-stationary, nonlinear
and time-dependent kernel. In general, there is no explicit
expression for KADF and numerical methods are required
for the solution of (2.6).

Remark 2 Not considered here, but a possible extension to
(2.6) is where γ is a tensor, which for d = 2 takes the form

∂t u = ∇ ·
(

γ11 γ12
γ12 γ22

)
∇u

Furthermore, extensions exist for the case where u is vector
or tensor valued. We do not consider these cases here, see
[38] for an overview.

2.1 Forward Solvers

First of all, let us establish a process between two states of
the function u. Integrating over time from t = t0 to t = t1 =
t0 + δt yields∫ t1

t0
∂t u(x, t) dt =

∫ t1

t0
(L(γ )u) (x, t) dt .

Note that the left-hand side can be expressed as
∫ t1

t0
∂t u(x, t) dt = u(x, t1) − u(x, t0) and we denote the right-
hand side by an integral operator Aδt (γ ), such that

(Aδt (γ )u)(x, t0) :=
∫ t1=t0+δt

t0
(L(γ )u) (x, t) dt . (2.8)

In the following, we denote the solution of (2.1) at time
instances tn as u(n) = u(x, tn). Then, we can establish a
relation between two time instances of u by

u(n+1) = (Id + Aδt (γ ))u(n) = u(n) +
∫ tn+1

tn
L(γ )u(x, t) dt,

(2.9)

where Id denotes the identity and tn+1 = tn + δt .
Since we cannot compute u(n+1) by (2.9) without the

explicit knowledge of the (possibly time dependent) diffusiv-
ity γ , it is helpful to rather consider a fixed diffusivity at each
time instanceγ (n) = γ (x, t = tn), orγ (n) = γ (u(x, t = tn))

in the nonlinear case; then, by using the differential operator
(2.2), we have an approximation of (2.8) by

δtL(γ (n))u(n) = δt(∇ · γ (n)∇u(n)) ≈ Aδt (γ )u(n).

We can now solve (2.6) approximately by iterating for time
steps δt using either an explicit scheme

DExpl
δt (γ (n))u(n) =

(
Id + δtL(γ (n))

)
u(n) , (2.10)

or an implicit scheme

DImpl
δt (γ (n))u(n) =

(
Id − δtL(γ (n))

)−1
u(n) , (2.11)

whereas (2.10) is stable only if CFL conditions are satisfied
and (2.11) is unconditionally stable, they are both only accu-
rate for sufficiently small steps δt . In fact, by the Neumann
series, the schemes are equivalent for small δt as

(Id − δtL(γ ))−1 = Id + δtL(γ ) + O((δt)2) (2.12)

and coincide with the integral formulation of (2.9).
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It is also useful to look at the Green’s function’s solutions.

Lemma 1 Consider the isotropic case with γ ≡ 1. Then, we
may write, with time steps δt = T /N,

GT u0 = G√
2T ∗ u0

= G√
2δt ∗ . . . ∗ G√

2δt︸ ︷︷ ︸
N -times

∗u0 = Gδt ◦ . . .Gδt︸ ︷︷ ︸
N -times

◦u0

(2.13)

Proof Take the Fourier Transform1

Ĝσ (k) = Fx→k Gσ (x) = e− σ2k2
2

and use the convolution theorem to give

Ĝ√
2T (k)û0(k) =

(
Π N

n=1Ĝ√
2δt (k)

)
û0(k)

e−k2T û0(k) =
(
e−k2δt

)N
û0(k) = e−k2Nδt û0(k),

which gives the claim. ��
Let us also note that in Fourier domain, by Taylor series

expansion, we have

exp(−k2δt) → 1 − k2δt + 1

2
k4(δt)2 − · · · ,

and therefore, in the spatial domain, the finite difference step
and the Gaussian convolution step are the same

lim
δt→0

(
G√

2δt ∗ u0

)
= (Id + δt�) ∗ u0

= lim
δt→0

(Id − δt�)−1 u0 .

2.2 Inverse Filtering

Let us now consider the inverse problem of reversing the
diffusion process. That is we have uT and aim to recover the
initial condition u0. This is a typical ill-posed problem as we
discuss in the following.

2.2.1 Isotropic Case � ≡ 1

As the forward problem is represented as convolution in the
spatial domain, the inverse mapping uT → u0 is a (station-
ary) deconvolution. We remind that ûT = e−k2T û0(k); then,
the inversion is formally given by division in the Fourier
domain as

1 Note the definition of Fourier Transform is chosen to give the correct
normalisation so that û(k)|k=0 = ∫

Rd u(x)dn x .

u0(x) = F−1
k→x

[
ûT (k)ek2T

]
. (2.14)

However, we note:

(i) The factor ek2T is unbounded, and hence, the equivalent
convolution kernel in the spatial domain does not exist.

(ii) Equation (2.14) is unstable in the presence of even a small
amount of additive noise, and hence, it has to be regu-
larised in practice.

Nevertheless, let us consider formally with ek2T =(
ek2δt

)N
that by Taylor series, we get

F−1
k→xe

k2δt ≈ F−1
k→x

[
1 + k2δt + 1

2
(k2δt)2 + · · ·

]

= 1 − δt� + O((δt)2) .

Motivated by this, we define an operator for the inversion
process

E iso
δt u := (Id − δt�) u � G−1

δt u. (2.15)

Clearly, E iso
δt coincides with the inverse of the implicit update

in (2.11), and

ũ0 = E iso
δt ◦ . . . ◦ E iso

δt︸ ︷︷ ︸
N -times

◦ uT (2.16)

is an estimate for the deconvolution problem which (in the
absence of noise) is correct in the limit

lim
δt→0

ũ0 → u0. (2.17)

2.2.2 Anisotropic Case

In this case, the diffused function is given by (2.7). Following
Lemma 1, we may put

uT = KT u0 � ũT := DExpl
δt (γ (N−1)) ◦ · · · ◦ DExpl

δt (γ (0))u0

(2.18)

and we also have

lim
δt→0

ũT → uT . (2.19)
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Conjecture 1 There exists a set of local (non-stationary) fil-
ters Eδt (ζ ) where

Eδt (ζ )u = u − δt
∫
Rd

ζ(x, y)u(y)dy (2.20)

and where ζ(x, y) has only local support and such that

u0 = K−1
T uT � ũ0 := Eδt (ζ

(N−1)) ◦ · · · ◦ Eδt (ζ
(0))uT .

(2.21)

Remark 3 (UnsharpMasking)We recall that a simplemethod
for “deconvolution” is calledUnsharp Maskingwhich is usu-
ally considered as

uobs → ũ = u + ε(uobs − Gσ ∗ uobs)

for some blur value σ and sufficiently small ε. By similar
methods as above, we find

ˆ̃u(k) = ûobs(k) + ε

(
Id − e− σ2k2

2

)
ûobs(k)

�
(
Id + εσ 2k2

2

)
ûobs(k)

⇒ ũ �
(
Id − εσ 2

2
�

)
uobs(x) .

We may choose to interpret the operators Eδt (ζ ) as a kind of
“non-stationary unsharp masking”.

For the presented problem of non-stationary nonlinear
blind deconvolution/inverse filtering, we are not aware of any
suitable classical methods. For a recent study that discusses
backward diffusion, see [4].

2.3 Discretisation

We introduce the definition of a sparse matrix operator rep-
resenting local non-stationary convolution

Definition 2 W is called a Sparse Sub-Diagonal (SSD)
matrix if its nonzero entries are all on sub-diagonals corre-
sponding to the local neighbourhood of pixels on its diagonal.

Furthermore, we are going to consider that a class of SSD
matricesW(ζ )with learned parameters ζ can be decomposed
as W(ζ ) = S(ζ ) + L(ζ ) where S is smoothing and L(ζ ) is
zero-mean, i.e. L(ζ ) has one zero eigenvalue such that its
application to a constant image gives a zero valued image

L(ζ )1 = 0

In the following, we restrict ourselves to the typical 4-
connected neighbourhood of pixels in dimension d = 2. For
the numerical implementation, we have the Laplacian stencil

� → L� =
⎛
⎝ 1
1 −4 1

1

⎞
⎠

from which we have that L� is zero mean. Similarly, we
will have for the numerical approximation of E iso

δt the matrix
operator

Id − δt� → Eisoδt =
⎛
⎝ 0
0 1 0
0

⎞
⎠ −

⎛
⎝ δt

δt −4δt δt
δt

⎞
⎠ .

Further we conjecture that in the numerical setting, Eδt (ζ )

is approximated by the sum of identity plus a SSD matrix
operator as

Eδt (ζ ) ∼ Id − δtL(ζ ) → Id − Lδt (ζ )

∼ Eδt (ζ ) =
⎛
⎝ 0
0 1 0
0

⎞
⎠ − δt

⎛
⎝ ζ1

ζ2 −∑
i ζi ζ4

ζ3

⎞
⎠ .
(2.22)

In the presence of noise, the inverse operator Eδt (ζ ) can be
explicitly regularised by addition of a smoothing operation

Ẽδt (ζ ) = Eδt (ζ ) + αS → Id − Lδt (ζ ) + αS =: Id − Wδt (ζ )

(2.23)

whereas in classical approaches to inverse filtering, the reg-
ularisation operator would be defined a priori, the approach
in this paper is to learn the operatorW and interpret it as the
sum of a differentiating operator L and a (learned) regulariser
S. This is discussed further in Sect. 4

3 ContinuumNetworks

Motivated by the previous section, we aim to build network
architectures based on diffusion processes. We first discuss
the notion of (neural) networks in a continuum setting for
which we introduce the concept of a continuum network as a
mapping between function spaces. That is, given a function
on a bounded domain Ω ⊂ R

d with f ∈ L p(Ω), we are
interested in finding a nonlinear parametrised operatorHΘ :
L p(Ω) → L p(Ω) acting on the function f .Wewill consider
in the following the case p ∈ {1, 2}; extensions to other
spaces depend on the involved operations and will be the
subject of future studies.

We will proceed by defining the essential building blocks
of a continuumnetwork and thence to discuss specific choices
to obtain a continuum version of the most common convolu-
tional neural networks. Based on this, we will then introduce
our proposed architecture as a diffusion network in the next
chapter.
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3.1 Formulating a ContinuumNetwork

The essential building blocks of a deep neural network are
obviously the several layers of neurons, but since these have a
specific notion in classical neural networks, see, for instance,
[35], we will not use the term of neurons to avoid confusion.
We rather introduce the concept of layers and channels as the
building blocks of a continuum network. In this construction,
each layer consists of a set of functions on a product space
and each function represents a channel.

Definition 3 (Layer and channels) For k ∈ N0, let Fk =
{ f k

1 , f k
2 , · · · , f k

I } be a set of functions f k
i ∈ L p(Ω) for

i ∈ I = {1, . . . , I }, I ≥ 1. Then, we call: Fk the layer k with
I channels and corresponding index set I.

The continuum network is then built by defining a relation
or operation between layers. In the most general sense, we
define the concept of a layer operator for this task.

Definition 4 (Layer operator) Given two layers Fk and Ft ,
k �= t , with channel index set I, J, respectively, we call the
mapping H : ⊗

I
L p(Ω) → ⊗

J
L p(Ω) with

HFk = Ft

a layer operator. If the layer operator depends on a set of
parameters Θ , then we write HΘ .

Wenote that for simplicity,wewill not index the set of param-
eters, i.e.Θ generally stands for both all involved parameters
of each layer separately, or the whole network. The classical
structure for layer operators follows the principle of affine
linear transformations followed by a nonlinear operation.
Ideally, the affine linear transformation should be parameter-
isable by a few parameters, whereas the nonlinear operation
is often fixed and acts pointwise. A popular choice is the
maximum operator also called the “Rectified Linear Unit”:

ReLU : L p(Ω) → L p(Ω), f → max( f , 0).

The continuum network is then given by the composition
of all involved layer functions. For example, in monochro-
matic imaging applications, we typically have an input image
f0 and a desired output fK with several layer functions in-
between that perform a specific task such as denoising or
sharpening. In this case, the input and output consist of one
channel, i.e. |F0| = |FK | = 1; consequently, for colour
images (in RGB), we have |F0| = |FK | = 3.

3.2 Continuum Convolutional Networks

Let us now proceed to discuss a specific choice for the layer
operator, namely convolutions. With this choice, we will

obtain a continuum version of the widely used convolutional
neural networks, which we will call here a continuum con-
volutional network, to avoid confusion with the established
convolutional neural networks (CNN). We note that similar
ideas have been addressed as well in [2].

Let us further consider linearly ordered network archi-
tectures that means each layer operator maps between
consecutive layers. The essential layer operator for a con-
tinuum convolutional network is then given by the following
definition.

Definition 5 (Convolutional layer operator) Given two lay-
ers Fk−1 and Fk with channel index set I, J, respectively, let
b j ∈ R and ωi, j ∈ L p(Ω), with compact support in Ω , be
the layer operator’s parameters for all i ∈ I, j ∈ J. We call
C(k)

Θ,ϕ the convolutional layer operator for layer k, if for each
output channel

C(k)
Θ,ϕ Fk−1 = ϕ

[
b j +

∑
i∈I

ωi, j ∗ f k−1
i

]
= f k

j , j ∈ J,

(3.1)

with a pointwise nonlinear operator ϕ : L p(Ω) → L p(Ω).

If the layer operator does not include a nonlinearity, we write
CΘ,Id. Now, we can introduce the simplest convolutional net-
work architecture by applying K ≥ 1 convolutional layer
operators consecutively.

Definition 6 (K -layer Continuum Convolutional Network)
Let K ≥ 1, then we call the composition of K convolutional
layer operator, denoted by CK

Θ , a K-layer continuum convo-
lutional network, such that

CK
Θ,ϕ = C(K )

Θ,ϕ ◦ · · · ◦ C(1)
Θ,ϕ, CK

Θ F0 = FK .‘ (3.2)

In the following, we will also refer to a K -layer CNN as the
practical implementation of a K -layer continuum convolu-
tional network. A popular network architecture that extends
this simple idea is given by a residual network (ResNet) [18],
that is, based on the repetition of a 2-layer CNNwith a resid-
ual connection, that consists of addition. That is, the network
learns a series of additive updates to the input. The under-
lying structure in ResNet is the repeated application of the
following residual block given by

RΘ,ϕ = C(2)
Θ,Id ◦ C(1)

Θ,ϕ + Id, RΘ,ϕ F0 = F2. (3.3)

Note that the second convolutional layer does not include a
nonlinearity. Furthermore, it is necessary that |F0| = |F2|,
but typically, it is often chosen such that |F0| = |F1| =
|F2|. The full continuum ResNet architecture can then be
summarised as follows. Let K ≥ 1, then the composition
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of K residual blocks, denoted by RK
Θ,ϕ , defines a K -block

continuum ResNet

RK
Θ,ϕ = C(K+1)

Θ,ϕ ◦ R(K )
Θ,ϕ ◦ · · · ◦ R(1)

Θ,ϕ ◦ C(0)
Θ,ϕ. (3.4)

Note that the two additional convolutional layers in the
beginning and end are necessary to raise the cardinality of
the input/output layer to the cardinality needed in the residual
blocks.A completeK-blockResNet then consists of 2(K +1)
layers. Note that in the original work [18], the network was
primarily designed for an image classification task rather than
image-to-image mapping that we consider here.

4 DiffNet: Discretisation and
Implementation

In this section, we want to establish a layer operator based on
the diffusion processes discussed in chapter 2. This means
that we now interpret the layers Fk of the continuum network
as time states of the function u : Ω × R+ → R, where
u is a solution of the diffusion Eq. (2.1). In the following,
we assume single-channel networks, i.e. |Fk | = 1 for all
layers. Then, we can associate each layer with the solution
u such that Fk = u(k) = u(x, t = tk). To build a network
architecture based on the continuum setting, we introduce
the layer operator versions of (2.10), and (2.20):

Definition 7 (Diffusion and filtering layer operator) Given
two layers Fk and Fk−1, such that Fk = u(x, tk) and
Fk−1 = u(x, tk−1), then a diffusion layer operator DΘ , with
parameters Θ = {γ, δt}, is given by

DΘ Fk−1 = DExpl
δt (γ (k−1))u(k−1)

= (Id + δtL(γ (k)))u(k−1) = Fk .
(4.1)

Similarly, an inverse filtering layer operator with parameters
Θ = {ζ, δt} is given by

EΘ Fk−1 = Eδt (ζ
(k−1))u(k−1)

= u(k−1) − δt
∫
Rd

ζ(x, y)u(k−1)(y)dy = Fk .
(4.2)

Note that this formulation includes a learnable time step and
hence the time instances that each layer represents changes.
That also means that a stable step size is implicitly learned,
if there are enough layers. In the following, we discuss a few
options on the implementation of the above layer operator,
depending on the type of diffusivity.

Remark 4 The assumption of a single-channel network, i.e.
|Fk | = 1 for all k, can be relaxed easily, either by assuming
|Fk | = m for some m ∈ N and all layers, or by introducing
a channel mixing as in the convolutional operator (3.1).

As a natural application, we could consider RGB or hyper-
spectral images as a multichannel input. In that case,
the filters would become a tensor representing both intra-
and inter-channel mixing but still modelled as a diffusion
process—see, for example, [9].

4.1 Discretisation of a ContinuumNetwork

Let us briefly discuss some aspects on the discretisation of a
continuum network; we first start with affine linear networks,
such as the convolutional networks discussed in Sect. 3.2.
Rather than discussing the computational implementation of
a CNN, (see, for example, the comprehensive description in
[10]), we concentrate instead on an algebraic matrix–vector
formulation that serves our purposes.

For simplicity, we concentrate on the two-dimensional
d = 2 case here. Let us then assume that the functions fi

in each layer are represented as a square n-by-n image and
we denote the vectorised form as f ∈ R

n2 . Then, any lin-
ear operation on f can be represented by some matrix A; in
particular, we can represent convolutions as a matrix.

We now proceed by rewriting the convolutional opera-
tion (3.1) in matrix–vector notation. Given two layers Fk

and Fk−1 with channel index set I, J, respectively, then we
can represent the input layer as vectorFk−1 ∈ R

Jn2 and simi-
larly the output layer Fk ∈ R

I n2 . Let Ai ∈ R
n2×Jn2 represent

the sum of convolutions in (3.1), then we can write the layer
operator in the discrete setting as matrix–vector operation by

fki = ϕ(bi1 + AiFk−1),

where 1 denotes a vector of ones with suitable size. Fur-
thermore, following the above notation, we can introduce a
stacked matrix A ∈ R

I n2×Jn2 consisting of all Ai and a vec-
tor b ∈ R

I consisting of all biases. Then, we can represent
the whole convolutional layer in the discrete setting as

Fk = ϕ(b ⊗ 1 + AFk−1). (4.3)

Now, the parameters of each layer are contained in thematrix
A and vector b.

4.2 Learned Forward and Inverse Operators

Let us now discuss a similar construction for the diffusion
layers. For the implementation of the diffusion network, we
consider the explicit formulation in (2.10) with the differ-
ential operator L(γ (k)) = ∇ · γ (k)∇ approximated by the
stencil (including the time step δt)

Lδt (γ
(k)) = δt

⎛
⎜⎝

γ
(k)
1

γ
(k)
2 −∑

i γ
(k)
i γ

(k)
4

γ
(k)
3

⎞
⎟⎠ . (4.4)
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Fig. 1 Illustration for a linear
three-layer diffusion network. In
this case, we learn the filters γ

as the diffusivity for each layer
explicitly

Linear Diffusion Network

F0 F1 F2 F3

Lδt(γ(1)) Lδt(γ(2)) Lδt(γ(3))

+Id +Id +Id

Fig. 2 Illustration for a
nonlinear three-layer diffusion
network. Here, the filters ζ are
implicitly estimated by a small
k-layer CNN and then applied to
the image in the filtering layer

Nonlinear Diffusion Network (DiffNet)

F0 F1 F2 F3

Wδt(ζ(1))

ζ(1)

Wδt(ζ(2))

ζ(2)

Wδt(ζ(3))

ζ(3)

+Id +Id +Id

k-layer CNN k-layer CNN k-layer CNN

We use zero Neumann boundary conditions on the domain
boundary

∂νu = 0 on ∂Ω × (0, T ]. (4.5)

Then, we can represent (4.1) by

Fk = (Id + Lδt (γ ))Fk−1. (4.6)

The basis of learning a diffusion network is now given as
estimating the diagonals of Lδt (γ ) and the time step δt . This
can be done either explicitly as for the CNN or indirectly by
an estimator network, as we will discuss next.

4.3 Formulating DiffNet

Let us first note that if we construct our network by strictly
following the update in (4.6), we restrict ourselves to the
forward diffusion. To generalise the inverse problem,we con-
sider

Wδt (ζ ) = δt

⎛
⎝ ζ1

ζ2 −ζ5 ζ4
ζ3

⎞
⎠ . (4.7)

Additionally, there are two fundamentally different cases
for the diffusivity γ we need to consider before formulating
a network architecture to capture the underlying behaviour.
These two cases are

(i) Linear diffusion; spatially varying and possible time
dependence, γ = γ (x, t).

(ii)) Nonlinear diffusion; diffusivity depending on the solu-
tion u, γ = γ (u(x, t)).

In the first case, we could simply try to learn the diffusivity
explicitly, to reproduce the diffusion process. In the second
case, this is not possible, and hence, an estimation of the
diffusivity needs to be performed separately in each time
step from the image itself, before the diffusion step can be
performed. This leads to two conceptually different network
architectures.

The linear case (i) corresponds to the diffusion layer oper-
ator (4.1) and is aimed to reproduce a linear diffusion process
with fixed diffusivity. Thus, learning the mean-free filter
suffices to capture the physics. The resulting network archi-
tecture is outlined in Fig. 1. Here, the learned filters can be
directly interpreted as the diffusivity of layer k and are then
applied to Fk−1 to produce Fk .

In the nonlinear case (ii), we follow the same update struc-
ture, but now the filters are not learned explicitly; they are
rather estimated from the input layer itself, as illustrated in
Fig. 2. Furthermore, since this architecture is designed for
inversion of the nonlinear diffusion process, we employ the
generalised stencil Wδt (ζ ). Then, given layer Fk , the filters
ζ are estimated by a small CNN from Fk−1, which are then
applied following an explicit update as in (4.6) to produceFk .
Note that the diagonals in the update matrix are produced by
the estimation CNN. We will refer to this nonlinear filtering
architecture as the DiffNet under consideration in the rest of
this study.

In contrast to classical CNN architectures, the proposed
DiffNet is nonlinear by design, and hence, no additional non-
linearities are necessary. Compared to previous approaches,
such as [6], we note that the parameters of the estimating
CNN are not used to process the image directly, but rather to
produce the filters ζ for the update matrix only.

Comparing ’Diffnet’ to ’PDE-NET2.0’ [27], in the lat-
ter, the training assumes that full time-series data u(x, t)
are available, and the PDE is approximated by a forward
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Euler method with appropriate stability constraints. In our
approach, only initial and final conditions are assumed to be
known; the coefficients of the PDE are spatially varying, and
both a forward and an inverse problem can be learned, and
the latter requires regularisation which is learned simultane-
ously with the PDE coefficients.

4.3.1 Implementation

The essential part for the implementation of a diffusion net-
work is to perform the update (4.6) with either Lδt (γ ) or
Wδt (ζ ). For computational reasons, it is not practical to build
the sparse diagonal matrix and evaluate (4.6); we rather rep-
resent the filters γ and ζ as an n × n-image and apply the
filters as pointwise matrix–matrix multiplication to a shifted
and cropped image, according to the position in the stencil.
This way, the zero Neumann boundary condition (4.5) is also
automatically incorporated.

For the linear diffusion network, we would need to learn
the parameter set Θ , consisting of filters and time steps,
explicitly. This has the advantage of learning a global opera-
tion on the image where all parameters are interpretable, but
it comes with a few disadvantages. First of all, in this form,
we are limited to linear diffusion processes and a fixed image
size. Furthermore, the parameters grow with the image size,
i.e. for an image of size n × n, we need 5n2 parameters per
layer. Thus, applications may be limited.

For the nonlinear architecture of DiffNet, where the fil-
ters depend on the image at each time step, we introduced an
additional estimator consisting of a K -layer CNN. This CNN
gets an image, given as layer Fk , as input and estimates the
filters ζ . The architecture for this K -layer CNN as estimator
is chosen to be rather simplistic, as illustrated in Fig. 3. The
inputFk consists of one channel, which is processed by K −1
convolutional layers with 32 channels and a ReLU nonlinear-
ity, followed by the last layer without nonlinearity and five
channels for each filter, which are represented as matrices of
the same size as the input Fk . In particular, for the chosen fil-
ter size of 3×3, we have exactly 9·(32+32·5+322 ·(K −2))
convolutional parameters and 32 · (K −1)+5 biases per dif-
fusion layer. That is for a five-layer CNN, we have 29.509
parameters independent of image size.

5 Computational Experiments

In the following, we will examine the reconstruction capabil-
ities of the proposed DiffNet. The experiments are divided
into a simple case of deconvolution, where we can exam-
ine the learned features and a more challenging problem of
recovering an image from its nonlinear diffused and noise-
corrupted version.

K-layer CNN for filter estimation

Ft · · ·
(K − 5)-layers

32 32 32 32

⎛
⎜⎜⎜⎝

ζ1
ζ2
ζ3
ζ4
ζ5

⎞
⎟⎟⎟⎠

conv 3×3

ReLU (conv3×3)

Fig. 3 Architecture of the K -layer CNN used as diffusivity estimator
in the nonlinear diffusion network (DiffNet)

5.1 Deconvolution with DiffNet

Wefirst examine a simple deconvolution experiment to deter-
mine what features the DiffNet learns in an inverse problem.
For this task, we will only consider deconvolution without
noise.

The forward problem is given by (2.1) with zero Neumann
boundary condition (4.5) and constant diffusivity γ ≡ 1. For
the experiment, we choose T = 1, which results in a small
uniform blurring, as shown in Fig. 4. We remind that for
the isotropic diffusion, the forward model is equivalent to
convolution in space with the kernel G√

2T , see (2.3). As it is
also illustrated in Fig. 4, convolution in the spatial domain is
equivalent to multiplication in Fourier domain. In particular,
high frequencies get damped and the convolved image is
dominated by low frequencies. Hence, for the reconstruction
task without noise, we essentially need to recover the high
frequencies.

The training and test data for DiffNet consist of simple
discs of varying radius and contrast. The training set consists
of 1024 samples and the test set of an additional 128, each of
size 64 × 64. The network architecture is chosen following
the schematic in Fig. 2, with three diffusion layers and a final
projection to the positive numbers by a ReLU layer. The
filter estimator is given by a four-layer CNN, as described in
Sect. 4.3.1. All networks were implemented in Python with
TensorFlow [1].

The input to the network is given by the convolved image
without noise, and we have minimised the �2-loss of the out-
put to the ground-truth image. The optimisation is performed
for about 1000 epochs in batches of 16 with the Adam algo-
rithm and initial learning rate of 4 × 10−4 and a gradual
decrease to 10−6. Training on a single Nvidia Titan Xp GPU
takes about 24min. The final training and test error are both at
a PSNR of 86.24, which corresponds to a relative �2-error of
2.5 × 10−4. We remind that this experiment was performed
without noise.
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Fig. 4 Illustration of the deconvolution problem for a simple ball. Left
column shows the image space, and the right column shows the cor-
responding absolute value of the Fourier coefficients. All images are
plotted on their own scale

The result of the network and intermediate updates for one
example from the test data are illustrated in Fig. 5. We also
show the filters ζ (k) computed as the output of the trained
CNN in each layer, k = 1, 2, 3. The output of the last diffu-
sion layer F3 is additionally processed by a ReLU layer to
enforce positivity in the final result. It can be seen that the
network gradually reintroduces the high frequencies in the
Fourier domain; especially, the last layermainly reintroduces
the high frequencies to the reconstruction. It is interesting to
see that the learned filters follow indeed the convention that
the central filter is of different signs than the directional fil-
ters. This enforces the assumption that the filter consists of a
mean-free part and a regularising part, which should be small
in this case, sincewe do not have any noise in the data. Lastly,
we note that the final layer, before projection to the positive
numbers, has a clearly negative part around the target, which
will be cut off resulting in a sharp reconstruction of the ball.

4-layer CNN

4-layer CNN

4-layer CNN

+
Id

+
Id

+
Id

ReLU

W
(ζ

(1
))

W
(ζ

(2
))

W
(ζ

(3
))

ecapsreiruoFecapsegamI

Fig. 5 Illustration of the deconvolution process with three layers of
DiffNet. The left column shows the processed image and intermedi-
ate steps. The right column shows the corresponding absolute value of
Fourier coefficients. All images are plotted on their own scale

5.2 Nonlinear Diffusion

Let us now consider the nonlinear diffusion process with the
Perona–Malik filter function [30] for (2.1) with zero Neu-
mann boundary condition (4.5). In this model, the diffusivity
is given as a function of the gradient
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Fig. 6 Samples from the test data for learning the inversion of nonlinear diffusion without noise. Mean PSNR for reconstructed test data with
DiffNet is: 63.72

γ (|∇u|2) = 1

1 + |∇u|2/λ2 (5.1)

with contrast parameter λ > 0. We mainly concentrate here
on the inverse problem of restoring an image that has been
diffused with the Perona–Malik filter and contaminated by
noise.

For the experiments, we have used the test data from the
STL-10 database [7], which consists of 100,000RGB images
with resolution 96×96. These images have been converted to
grey scale and divided to 90,000 for training and 10,000 for
testing. The obtained images were then diffused for four time
steps with δt = 0.1 and λ = 0.2. A few sample images from
the test data with the result of the diffusion are displayed in
Fig. 6. The task is then to revert the diffusion process with
additional regularisation to deal with noise in the data.

For all experiments, we have used the same network archi-
tecture of DiffNet using the architecture as illustrated in Fig.
2. By performing initial tests on the inversion without noise,
we have found that five diffusion layers with a four-layer
CNN, following the architecture in 3, gave the best trade-off
between reconstruction quality and network size. Increasing
the amount of either layers led to minimal increase in perfor-
mance. Additionally, we have used a ReLU layer at the end
to enforce nonnegativity of the output, similarly to the last
experiment.We emphasise that this architecture was used for
all experiments and hence some improvements for the high-
noise casesmight be expectedwithmore layers. All networks
were trained for 18 epochs, with a batch size of 16, and �2-
loss. For the optimisation, we have used the Adam algorithm
with initial learning rate of 2 × 10−3 and a gradual decrease

to 4 × 10−6. Training on a single Nvidia Titan XpGPU takes
about 75min.

As benchmark, we have performed the same experiments
with a widely used network architecture known as U-Net
[32]. This architecture has been widely applied in inverse
problems [3,12,21,22], even for applications where it is the-
oretically unsuitable, and hence can be considered as an
established benchmark. It is mainly used to post-process
initial directly reconstructed images from undersampled or
noisy data, for instance, by filtered back-projection in X-
ray tomography or the inverse Fourier transform in magnetic
resonance imaging [16]. The network architecture we are
using follows the publication [21] and differs from the
original mainly by a residual connection at the end. That
means the network is trained to remove noise and under-
sampling artefacts from the initial reconstruction. In our
context, the network needs to learn how to remove noise
and reintroduce edges. For training, we have followed a sim-
ilar protocol as for DiffNet. The only difference is that we
started with an initial learning rate of 5 × 10−4 with a grad-
ual decrease to 2 × 10−5. Training of U-Net takes about
3h.

The reconstruction results, for some samples of the test
data, with DiffNet can be seen in Fig. 6 for the case with-
out noise and in Fig. 7 for 1% noise on the diffused images.
A comparison of the reconstruction results with U-Net and
DiffNet is shown in Fig. 8 for the test without noise and in
Fig. 9 for 1% noise. Qualitatively, the reconstructed images
are very similar, as can be seen in the residual images in the
last column. The leftover noise pattern for both networks is
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Fig. 7 Samples from the test data for learning the inversion of nonlinear diffusion with 1% noise. Mean PSNR for reconstructed test data with
DiffNet is: 34.21
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Fig. 8 Comparison of reconstruction quality for reconstruction from
nonlinear diffused image without noise. Both networks are trained on
the full set of 90,000 images. PNSR: DiffNet 65.34, U-Net 61.08

concentrated on the fine structures of the ship. Quantitatively,
for the noise-free experiment, DiffNet has an increase of 4dB
in PSNR compared to the result of U-Net, 65.34 (DiffNet)
compared to 61.08 (U-Net). For the case with 1% noise, the
quantitative measures are very similar. Here, U-Net has a
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Fig. 9 Comparison of reconstruction quality for reconstruction from
1% noise contaminated nonlinear diffused image. Both networks are
trained on the full set of 90,000 images. PNSR: DiffNet 34.96, U-Net
35.27

slightly higher PSNR with 35.27 compared to DiffNet with
34.96. A thorough study of reconstruction quality of both
networks follows in the next section as well as some inter-
pretation of the learned features in DiffNet.
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Forward Problem Inverse Problem (no Noise)

Inverse Problem (0.1% noise)
Inverse Problem (1% noise)

Test error vs. training size

Fig. 10 Generalisation plot for the forward and inverse problems of nonlinear diffusion and varying noise levels. Test error depending on the
amount of training data, for both DiffNet and U-Net

6 Discussion

First of all, we note that the updates in DiffNet are performed
explicitly and that the CNN in the architecture is only used to
produce the filters ζ . This means that DiffNet needs to learn
a problem-specific processing, in contrast to a purely data-
driven processing in a CNN. Consequently, the amount of
necessary learnable parameters is much lower. For instance,
the five-layer DiffNet used for inversion of the nonlinear dif-
fusion in Sect. 5.2 has 101,310 parameters, whereas the used
U-Net with a filter size of 3 × 3 has a total of 34,512,705
parameters, i.e.DiffNet uses only ∼ 0.3% of parameters
compared to U-Net, and hence, the learned features can be
seen to be much more explicit. In the following, we discuss
some aspects that arise from this observation, such as gener-
alisability and interpretability.

6.1 Generalisability

To test the generalisation properties of the proposed DiffNet,
we have performed similar experiments as shown in Sect. 5.2
for nonlinear diffusion, but with increasing amounts of train-
ing data. Under the assumption that DiffNet learns a more
explicit update than a classic CNN, we would expect also
to require less training data to achieve a good test error. To
certify this assumption, we have examined four settings of
nonlinear diffusion with the Perona–Malik filter: learning
the forward model, learning to reconstruct from the diffused
image without noise, as well as with 0.1% and 1% noise.
We then created training datasets of increasing size from just
10 samples up to the full size of 90,000. For all scenarios,
we have trained DiffNet and U-Net following the training
protocol described in 5.2. Additionally, we have aborted the
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Fig. 12 Obtained diagonal filters ζ5 for different noise levels. Each filter is displayed on its own scale

procedure when the networks started to clearly overfit the
training data.

Results for the four scenarios are shown in Fig. 10. Most
notably DiffNet outperforms U-Net clearly for the forward
problem and the noise-free inversion, by 4dB and 3dB,

respectively. For the noisy cases, both networks perform
very similar for the full training data size of 90,000. The
biggest difference overall is that DiffNet achieves its maxi-
mum test error already with 500–1000 samples independent
of the noise case, whereas the U-Net test error saturates ear-
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lier with higher noise. In conclusion, we can say that for the
noisy cases, both networks are very comparable in recon-
struction quality, but for small amounts of data, the explicit
nature of DiffNet is clearly superior.

6.2 Interpretation of Learned Filters

Since all updates are performed explicitly with the output
from the filter estimation CNN, we can interpret some of the
learned features. For this purpose, we show the filters for
the ship image from Sect. 5.2 for the three inversion scenar-
ios under consideration. In Fig. 11, we show the sum of all
learned filters, i.e.

∑4
i=1 ζi − ζ5. If the network would only

learn the mean-free differentiating part, then these images
should be zero. This implies that the illustrated filters in
Fig. 11 can be related to the learned regularisationS(ζ ). Addi-
tionally, we also show the diagonal filters ζ5 in Fig. 12.

We would expect that with increasing noise level, the fil-
ters will incorporate more smoothing to deal with the noise;
this implies that the edges get wider with increasing noise
level. This can be nicely observed for the diagonal filters in
Fig. 12. For the smoothing in Fig. 11, we see that the first
layer consists of broader details and edges that are refined in
the noise-free case for increasing layers. In the noisy case, the
latter layers include some smooth features that might depict
the regularisation necessary in the inversion procedure. It is
generally interesting to observe that the final layer shows
very fine local details, necessary to restore fine details for the
final output.

Finally, we have computed training data of a wider noise
range to examine the regularisation properties of the learned
network. For this, we have taken the full 90,000 training sam-
ples and contaminated the diffused image with noise ranging
from 0.01 to 10% noise. As we conjectured in Sect. 2.3, the
learned update filters can be decomposed to amean-free oper-
ation and a smoothing partW(ζ ) = L(ζ )+S(ζ ). This implies
that the magnitude of S(ζ ) has to increase with higher noise.
To examine this conjecture, we have taken (fixed) 32 sam-
ples from the reconstructed test data for each noise level and
computed an estimate of S as the sum

∑4
i=1 ζi − ζ5, i.e. the

deviation from the mean-free part. Furthermore, we use the
mean of the absolute value of S over the whole image as an
estimator ofα. The resulting graph of smoothing versus noise
level is shown in Fig. 13. As we have conjectured, the esti-
mate of α increases clearly with the noise level, and hence,
we believe our interpretation of the learned filters as the com-
position of a mean-free part and a smoothing necessary for
ill-posed inverse problems is valid.

7 Conclusions

In this paper, we have explored the possibility to establish
novel network architectures based on physical models other

Fig. 13 Estimate of the smoothing level α for increasing noise in the
inverse problem. Computed over a sample of 32 images from the test
data

than convolutions; in particular, we concentrated here on dif-
fusion processes. As main contributions, we have introduced
some nonlinear forward mappings, modelled through learn-
ing rather than just through PDEs or integral transforms. We
have reviewed (regularised) inverse diffusion processes for
inverting such maps. In particular, we have conjectured that
these inverse diffusion processes can be represented by local
non-stationary filters, which can be learned in a network
architecture. More specific, these local filters can be rep-
resented by a sparse sub-diagonal (SSD) matrix and hence
efficiently used in the discrete setting of a neural network.
We emphasise that even though we have concentrated this
study on a specific structure for these SSDmatrices based on
diffusion, other (higher order) models can be considered.

We obtain higher interpretability of the network archi-
tecture, since the image processing is explicitly performed
by the application of the SSD matrices. Consequently, this
means that only a fraction of parameters is needed in com-
parison with classical CNN architectures to obtain similar
reconstruction results. We believe that the presented frame-
work and the proposed network architectures can be useful
for learning physical models in the context of imaging and
inverse problems, especially where a physical interpretation
of the learned features is crucial to establish confidence in
the imaging task.

Acknowledgements Open access funding provided by University of
Oulu including Oulu University Hospital. We thank Jonas Adler and
Sebastian Lunz for valuable discussions and comments.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


486 Journal of Mathematical Imaging and Vision (2020) 62:471–487

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on
heterogeneous systems. Software available from https://www.
tensorflow.org/ (2015)

2. Adler, J., Öktem, O.: Solving ill-posed inverse problems using iter-
ative deep neural networks. Inverse Prob. 33(12), 124007 (2017)

3. Antholzer, S., Haltmeier, M., Schwab, J.: Deep learning for pho-
toacoustic tomography from sparse data. Inverse Probl. Sci. Eng.
27, 987–1005 (2019)

4. Bergerhoff, L., Cárdenas, M., Weickert, J., Welk, M.: Stable back-
ward diffusion models that minimise convex energies. ArXiv
preprint arXiv:1903.03491 (2019)

5. Calvetti, D., Somersalo, E.: Hypermodels in the Bayesian imaging
framework. Inverse Probl. 24, 034013 (2008)

6. Chen,Y.,Yu,W., Pock, T.:On learning optimized reaction diffusion
processes for effective image restoration. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5261–5269 (2015)

7. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks
in unsupervised feature learning. In: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics,
pp. 215–223 (2011)

8. Douiri, A., Schweiger, M., Riley, J., Arridge, S.: Local diffusion
regularization method for optical tomography reconstruction by
using robust statistics. Opt. Lett. 30(18), 2439–2441 (2005)

9. Ehrhardt, M.J., Arridge, S.R.: Vector-valued image processing by
parallel level sets. IEEE Trans. Image Process. 23(1), 9–18 (2013)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT
Press. http://www.deeplearningbook.org (2016)

11. Haber, E., Ruthotto, L.: Stable architectures for deep neural net-
works. Inverse Probl. 34(1), 014004 (2017)

12. Hamilton, S.J., Hauptmann, A.: Deep d-bar: real time electrical
impedance tomography imaging with deep neural networks. IEEE
Trans. Med. Imaging 37, 2367–2377 (2018)

13. Hamilton, S.J., Hauptmann, A., Siltanen, S.: A data-driven edge-
preserving D-bar method for electrical impedance tomography.
Inverse Probl. Imaging 8(4), 1053–1072 (2014)

14. Hammernik, K., Klatzer, T., Kobler, E., Recht, M.P., Sodickson,
D.K., Pock, T., Knoll, F.: Learning a variational network for recon-
struction of accelerated MRI data. Magn. Reson. Med. 79(6),
3055–3071 (2018)

15. Hannukainen, A., Harhanen, L., Hyvönen, N.,Majander, H.: Edge-
promoting reconstruction of absorption and diffusivity in optical
tomography. Inverse Probl. 32(1), 015008 (2015)

16. Hauptmann, A., Arridge, S., Lucka, F., Muthurangu, V., Steeden,
J.: Real-time cardiovascular MR with spatio-temporal artifact sup-
pression using deep learning-proof of concept in congenital heart
disease. Magn. Reson. Med. 81, 1143–1156 (2019)

17. Hauptmann, A., Lucka, F., Betcke, M., Huynh, N., Adler, J., Cox,
B., Beard, P., Ourselin, S., Arridge, S.: Model-based learning for
accelerated, limited-view 3-d photoacoustic tomography. IEEE
Trans. Med. Imaging 37(6), 1382–1393 (2018)

18. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778 (2016)

19. Helin, T., Lassas, M.: Hierarchical models in statistical inverse
problems and the Mumford–Shah functional. Inverse Probl. 27(1),
015008 (2010)

20. Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with
topological signatures. In: Advances in Neural Information Pro-
cessing Systems, pp. 1634–1644 (2017)

21. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolu-
tional neural network for inverse problems in imaging. IEEETrans.
Image Process. 26(9), 4509–4522 (2017)

22. Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network
using directional wavelets for low-dose X-ray CT reconstruction.
Med. Phys. 44(10), e360–e375 (2017)

23. Khoo, Y., Lu, J., Ying, L.: Solving parametric PDE problems with
artificial neural networks. arxiv:1707.03351v2 (2017)

24. Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas,
F., et al.: Interpretability beyond feature attribution: quantitative
testingwith concept activation vectors (tcav). In: InternationalCon-
ference on Machine Learning, pp. 2673–2682 (2018)

25. Kimmel, R.: Numerical Geometry of Images: Theory, Algorithms,
and Applications. Springer, Berlin (2003)

26. Liu, R., Lin, Z., Zhang,W., Su, Z.: Learning pdes for image restora-
tion via optimal control. In: European Conference on Computer
Vision, pp. 115–128. Springer (2010)

27. Long, Z., Lu, Y., Dong, B.: Pde-net 2.0: learning pdes from data
with a numeric-symbolic hybrid deep network. ArXiv preprint
arXiv:1812.04426 (2018)

28. Long, Z., Lu, Y., Ma, X., Dong, B.: Pde-net: Learning pdes from
data. In: Proceedings of the 35th International Conference on
Machine Learning (ICML 2018) (2018)

29. Meinhardt, T., Moeller, M., Hazirbad, C., Cremers, D.: Learn-
ing proximal operators: using denoising networks for regularizing
inverse imaging problems. In: International Conference on Com-
puter Vision, pp. 1781–1790 (2017)

30. Perona, P., Malik, J.: Scale-space and edge detection using
anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell.
12(7), 629–639 (1990)

31. Raissi, M., Karniadakis, G.E.: Hidden physics models:
machine learning of nonlinear partial differential equations.
arxiv:1708.00588v2 (2017)

32. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional net-
works for biomedical image segmentation. In: International Con-
ference on Medical Image Computing and Computer-Assisted
Intervention, pp. 234–241. Springer (2015)

33. Ruthotto, L., Haber, E.: Deep neural networks motivated by partial
differential equations. ArXiv preprint arXiv:1804.04272 (2018)

34. Sapiro, G.: Geometric Partial Differential Equations and Image
Analysis. Cambridge University Press, Cambridge (2006)

35. Shalev-Shwartz, S., Ben-David, S.: UnderstandingMachineLearn-
ing: From Theory to Algorithms. Cambridge University Press,
Cambridge (2014)

36. Sirignano, J., Spiliopoulos, K.: DGM: A deep learning algo-
rithm for solving partial differential equations. arxiv:1708.07469v1
(2017)

37. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accel-
erating Eulerian fluid simulation with convolutional networks.
arxiv:1607.03597v6 (2017)

38. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner,
Stuttgart (1998)

39. Weickert, J., Romeny, B.T.H., Viergever, M.A.: Efficient and reli-
able schemes for nonlinear diffusion filtering. IEEE Trans. Image
Process. 7(3), 398–410 (1998)

40. Weinan, E., Jiequn, H., Arnulf, J.: Deep learning-based numer-
ical methods for high-dimensional parabolic partial differen-
tial equations and backward stochastic differential equations.
arxiv:1706.04702v1 (2017)

41. Wu, Y., Zhang, P., Shen, H., , Zhai, H.: Visualizing neural network
developing perturbation theory. arxiv:1802.03930v2 (2018)

42. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural net-
work for image deconvolution. In: Advances in Neural Information
Processing Systems, pp. 1790–1798 (2014)

43. Ye, J.C., Han, Y., Cha, E.: Deep convolutional framelets: a general
deep learning framework for inverse problems. SIAM J. Imaging
Sci. 11(2), 991–1048 (2018)

123

https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/1903.03491
http://www.deeplearningbook.org
http://arxiv.org/abs/1707.03351v2
http://arxiv.org/abs/1812.04426
http://arxiv.org/abs/1708.00588v2
http://arxiv.org/abs/1804.04272
http://arxiv.org/abs/1708.07469v1
http://arxiv.org/abs/1607.03597v6
http://arxiv.org/abs/1706.04702v1
http://arxiv.org/abs/1802.03930v2


Journal of Mathematical Imaging and Vision (2020) 62:471–487 487

44. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image
reconstruction by domain-transform manifold learning. Nature
555, 487–489 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

S. Arridge received a BA Hons
in Physics from Cambridge Uni-
versity in 1982, after which he
moved to UCL Medical Physics
where he completed a PhD in
1990. He subsequently joined the
department of Computer Science
UCL as a lecturer and has been
professor of image processing
since 2001 and visiting professor
in the department of Mathemat-
ics since 2011. He was a found-
ing member of the UCL Centre
for Medical Image Computing in
2005 and the founder and direc-

tor of the UCL Centre for Inverse Problems since 2013. He has been
a member of the editorial board of the Institute of Physics journal
“Inverse Problems” since 2000, and Editor-In-Chief since 2015. He is
widely known as one of the originators of the field of Diffuse Opti-
cal Tomography (DOT). A special focus of his research in the last
decade has been Imaging from Coupled Physics and in particular Pho-
toacoustic Tomography (PAT). He has worked more generally in the
application of inverse problems to other medical imaging areas includ-
ing Diffusion Tensor MRI, SPECT, PET and digital tomosynthesis.

A. Hauptmann received his BSc
and MSc in Mathematics from the
Technical University Munich in
2011 and 2012, respectively. He
received his PhD in 2017 from the
University of Helsinki in Applied
Mathematics. Additionally, he
worked from 2013 to 2014 as
R&D Scientist at the X-ray sensor
manufacturer AJAT Oy in Espoo,
Finland. Since 2017 he holds a
position as Research Associate in
Medical Image Computing at the
Centre of Medical Imaging, Uni-
versity College London and is an

Assistant Professor (tenure track) of Computational Mathematics
since 2019 at the Research Unit of Mathematical Sciences, University
of Oulu. His research interest is in inverse problems and tomographic
imaging with a focus on medical applications, and his current focus is
on combining inverse problems and data-driven methods, such as deep
learning and neural networks.

123


	Networks for Nonlinear Diffusion Problems in Imaging
	Abstract
	1 Introduction
	2 Diffusion and Flow Processes for Imaging
	2.1 Forward Solvers
	2.2 Inverse Filtering
	2.2.1 Isotropic Case γequiv1
	2.2.2 Anisotropic Case

	2.3 Discretisation

	3 Continuum Networks
	3.1 Formulating a Continuum Network
	3.2 Continuum Convolutional Networks

	4 DiffNet: Discretisation and Implementation
	4.1 Discretisation of a Continuum Network
	4.2 Learned Forward and Inverse Operators
	4.3 Formulating DiffNet
	4.3.1 Implementation


	5 Computational Experiments
	5.1 Deconvolution with DiffNet
	5.2 Nonlinear Diffusion

	6 Discussion
	6.1 Generalisability
	6.2 Interpretation of Learned Filters

	7 Conclusions
	Acknowledgements
	References




