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ABSTRACT

Deconvolution is a fundamental inverse problem in signal
processing and the prototypical model for recovering a signal
from its noisy measurement. Nevertheless, the majority of
model-based inversion techniques require knowledge on the
convolution kernel to recover an accurate reconstruction and
additionally prior assumptions on the regularity of the signal
are needed. To overcome these limitations, we parametrise
the convolution kernel and prior length-scales, which are then
jointly estimated in the inversion procedure. The proposed
framework of blind hierarchical deconvolution enables accu-
rate reconstructions of functions with varying regularity and
unknown kernel size and can be solved efficiently with an em-
pirical Bayes two-step procedure, where hyperparameters are
first estimated by optimisation and other unknowns then by
an analytical formula.

Index Terms— Blind deconvolution, hierarchical prior
models, Bayesian inversion, Gaussian process models

1. INTRODUCTION

In machine learning, inverse problems, and signal processing,
a typical problem is to make statistical estimation of an under-
lying signal given noisy convolved measurements. Our objec-
tive is to deconvolve the signal given the noisy measurements,
noise statistics and a convolution kernel function with an un-
known kernel parameter. This kind of a problem is called
blind deconvolution [1].

Our proposed estimation algorithm is based on Bayesian
statistical inference, where the solution is formed as a joint
a posteriori distribution for the unknown signal and the con-
volution kernel parameter. The posterior is proportional (up
to a normalising constant) to the product of the likelihood and
prior distributions, and in our case, we factorise our joint prior
as a hierarchical model. The choice of the denoising prior is
based on various factors, such as the assumed smoothness,
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edges, or high-frequency components of the underlying sig-
nal. Consequently, it is inherently difficult to formulate a
suitable prior for a large class of functions and is often ap-
proached by a combination of priors [2] to represent different
features. In the following, we shall discuss the possibility to
use a unifying prior by estimating the length-scale of the sig-
nal in a hierarchical model.

Gaussian processes are common choices for (denoising)
priors, and they are covered in detail in the context of machine
learning in Rasmussen and Williams 2006 [3] and in statisti-
cal inverse problems in Kaipio and Somersalo 2005 [4]. The
recipe is rather simple, model your mean and covariance func-
tions in the continuous time, and discretise them for practical
computations. However, the way you choose these functions
is not trivial, and the choice dictates both inference accuracy,
but also induces certain computational cost.

For the sake of simplicity, let us choose a zero-mean
Gaussian process (GP) prior with non-stationary covariance.
The construction of the non-stationarity covariance can be
done in various ways – some of the recent techniques include
deep GPs in the sense of Paciorek and Schervish 2006 [5]
and Damianou and Lawrence 2013 [6]. The analytical prop-
erties of deep GPs with applications to inverse problems was
studied by Dunlop et al. 2018 [7], and a shallow two-layer
alternative based on sparse presentations via stochastic partial
differential equations (SPDE) was introduced in Roininen et
al. 2019 [8]. This was further developed by Monterrubio-
Gómez et al. 2020 [9], where also MCMC techniques with
elliptical slice sampling were developed for the extended
model in [8].

In this paper, we start by using the Paciorek and Schervish
[5] parameterisation of the covariance function, and model
the length-scaling either as a Cauchy walk or a total varia-
tion (TV) prior, that is, the length-scaling is modelled as a
non-Gaussian process. TV priors correspond essentially to
Laplace priors. A similar construction was done for SPDE
representation and Cauchy prior in [8]. We note that for full
uncertainty quantification with respect to choice of the dis-
cretisation, Lassas and Siltanen 2004 [10] showed that under
change of discretisation, the statistical estimators do not stay
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invariant. These can be alleviated by using Cauchy priors in
the sense of Markkanen et al. 2019 [11]. The reason TV pri-
ors are not discretisation-invariant is because they have finite
moments, and every stochastic process with finite moments
converges to a Gaussian process when the discretisation step
goes to zero.

We shall apply here the shallow 2-layer hierarchical
model to blind deconvolution, where, on top of the unknown
itself, we estimate the parameter of the convolution kernel.
This leads to a severely ill-posed problem, and we show that
with the proposed method of blind hierarchical deconvolu-
tion, we can estimate the kernel parameter, and the unknown
itself, which has smooth, linear and constant parts as well
as sharp edges. Typical prior choices limit often to one of
these features, but our objective is to show that we can actu-
ally construct models which are capable to recover all these
features.

2. A BLIND DECONVOLUTION MODEL

Deconvolution can be formulated as the basic linear inverse
problem [12] of recovering an unknown signal f ∈ Rn from
its noisy measurement g ∈ Rn, that is

g = Aτf + e, (1)

where e ∈ Rn denotes the noise component in the mea-
surements and the forward mapping given as matrix Aτ :
Rn → Rn models the relationship between signal and mea-
surements. Typically, to obtain accurate reconstructions we
assume to have full knowledge of the mappingAτ . However,
in the context of blind deconvolution, this is not the case and
reconstruction quality is essentially limited by our ability to
estimate the underlying convolution kernel. In particular, we
assume that the kernel depends on the parameter τ > 0, which
then needs to be jointly recovered with the actual signal for an
accurate reconstructions. The full measurement model can be
formulated as

(Aτf)(x) := (φ(·; τ) ∗ f)(x), (2)

with a Gaussian convolution kernel φ(x; τ) = 1√
2πτ2

e−
x2

2τ2 ,
where the parameter τ effectively controls the degree of blur-
ring present in the measurements and is included as an un-
known in the inversion process. In the following,Aτ denotes
the matrix representation of Aτ in (2) and f is the discretisa-
tion of the continuous signal giving rise to the matrix-vector
representation in (1).

We emphasise that we consider here the prototypical
problem of a Gaussian as convolution kernel, but other param-
eter dependent kernels, e.g. boxcar or triangular functions,
can be considered as well in the following framework.

2.1. Bayesian inversion

Statistical or Bayesian inversion is a probabilistic framework
for solving inverse problems. The solution to the problem
is given as a probability distribution called the posterior dis-
tribution. The probability density function of the posterior
distribution is obtained through the Bayes’ formula

p(f ,θ|g) =
p(g|f ,θ)p(f ,θ)

p(g)
, (3)

where p(g|f ,θ) is the likelihood function that depends on
the forward model and assumed distribution of the noise.
Here a joint prior density p(f ,θ) is hierarchically factored
as p(f ,θ) = p(f |θ)p(θ), where p(f |θ) is the prior density
that encapsulates the prior assumptions concerning f given
hyperparameters θ and p(θ) is the prior for hyperparameters;
p(g) is a normalising constant. The vector θ consists of hy-
perparameters that are not interesting as such but control the
properties of f and must be estimated with the help of the
prior density p(θ).

Our empirical Bayes two-step approach for solving the
inverse problem will be the following:

(i) Find the maximum a posteriori (MAP) estimate of the
marginal posterior distribution of the hyperparameters,
i.e. θMAP = arg maxθ p(θ|g). (Note that signal f is
analytically integrated out from this expression).

(ii) Find the closed form solution to the conditional poste-
rior distribution of f given θMAP.

2.2. Prior models

We construct different prior models for the unknown signal f
and hyperparameters θ. Our goal is to be able to reconstruct
both smooth and discontinuous/non-differentiable features of
the signal. For this purpose, we introduce a length-scale func-
tion `(·). The idea is that when there are rapid changes or
discontinuities in f at point x, the length-scale `(x) is small,
and consequently, when f is smooth or constant at x, `(x) is
large. We then incorporate this in the non-stationary Matérn
covariance function [9], defined as

CNS(xi, xj) =
γ2(`(xi)`(xj))

1
4 21−ν

Γ(ν)Li,j

(
|xi − xj |
Li,j

)ν
Kν

(
|xi − xj |
Li,j

)
,

with Li,j =
√

(`(xi) + `(xj))/2

(4)

where xi and xj are points in the domain of f , γ2 is a mag-
nitude parameter, ν is a smoothness parameter and Kν is
the modified Bessel function of the second kind of order
ν. We fix all other parameters in the covariance function
and estimate the length-scale function as a part of θ. We
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Fig. 1: The unknown signal f drawn with black line and noisy measurements g (blue and red lines) with 1% noise (left) and
with 5% noise (right). The red lines indicate a convolution kernel with parameter τ = 0.25, the blue lines are for the wider
convolution kernel with τ = 0.5.

let f ∼ N (0,CNS
` ), where CNS

` is a matrix whose entries
consist of pairwise covariances between all measurement grid
points calculated with Eq. (4).

We consider two different hyperprior models for the log
length-scale function: Cauchy difference prior and total vari-
ation (TV) prior (essentially Laplace difference prior). These
priors bring some stiffness to the length-scale function but the
main idea is to improve its estimability by borrowing strength
from adjacent covariate points with low computational cost.
The priors can be formally expressed as

log(`(xi))− log(`(xi−1))
i.i.d.∼ Cauchy(0, α), or

log(`(xi))− log(`(xi−1))
i.i.d.∼ Laplace(0, α),

(5)

where α acts as a regularisation parameter and must be chosen
for each dataset individually and i refers to the ith element of
the vector. For the log convolution kernel width for the model
(2), we use a uniform prior: log(τ) ∼ U(−5, 0).

2.3. Posterior distribution

To help in calculation of the marginalised posterior distribu-
tion (i) and the conditional posterior distribution (ii) above,
we will assume that e ∼ N (0, σ2I) with f ⊥⊥ e. These
assumptions allow for the analytic marginalisation of the pos-
terior distribution over f , yielding

p(θ|g) =

∫
Rn

p(g|f ,θ)p(f |θ)p(θ)

p(g)
df =

p(g|θ)p(θ)

p(g)
,

(6)

where

p(g|θ) =
1√

(2π)n det(AτC
NS
` A

T
τ + σ2I)

exp

{
−1

2
gT (AτC

NS
` A

T
τ + σ2I)−1g

}
.

(7)

The vector θ consists now of the discretised length-scale
function ` and the convolution kernel width τ .

To obtain the final reconstruction of the signal, we note
that the Gaussian assumptions also result in the Gaussianity
of the conditional posterior of f given θMAP with closed form
solutions for the mean and covariance. That means, we have
that f |g,θMAP ∼ N (f̄θMAP

, C̄θMAP) [4], where

f̄θMAP
= CNŜ̀ AT

τ̂ (Aτ̂C
NŜ̀ AT

τ̂ + σ2I)−1g,

C̄θMAP = CNŜ̀ −CNŜ̀ AT
τ̂ (Aτ̂C

NŜ̀ AT
τ̂ + σ2I)−1Aτ̂C

NŜ̀ .

(8)

The hat-notation indicates that the matrices are constructed
with the MAP estimates of the parameters.

3. COMPUTATIONAL EXPERIMENTS

We will test the performance of the proposed framework of
blind hierarchical deconvolution with a set of computational
experiments. In order to assess the capability to reconstruct
functions of varying regularity we chose the ground-truth sig-
nal (Fig. 1) to consist of a smooth exponential spike, a lin-
ear ramp as well as a piece-wise constant. To avoid inverse
crime1, we simulated the data on a grid of 300 equidistant

1Inverse crime is understood as making the inversion too easy by using
the same discretisation for generating the data and the inversion process.



points and downsampled the measurements to the final grid
size of 100 equidistant points. This way, we make sure that
the inversion process is more challenging and represents a
realistic scenario, where discretisation errors are inherently
present.

The discrete signal is convolved with a Gaussian convo-
lution kernel following (2) with two different kernel widths
by choosing τ = 0.25 and τ = 0.5. We have then added
Gaussian noise to both convolved signals with relative noise
level of 1% and 5%, yielding in total four datasets of varying
difficulty.

To compute the MAP estimate of the hyperparameters, we
used a limited memory BFGS algorithm [13], implemented in
the R function optim(). To avoid errors caused by numer-
ical inaccuracies, we constrained the parameters to a maxi-
mum of log(1000). For the parameters of the Matérn covari-
ance function (4), we set γ2 = 1 and ν = 1.5. The final
reconstruction f̄θMAP

is then computed with equation (8).
An important aspect in the reconstruction is the choice of

regularisation parameter α for the priors in (5), which will in-
fluence the reconstructed characteristics. To find such an op-
timal regularisation parameter α, we performed a grid search
for each dataset and prior, to find the parameter such that the
mean squared error between the estimate of f and ground
truth was minimised. This method of choosing α is clearly
unsuitable for measured signals, where the ground truth is not
available and hence secondary indicators would be needed to
choose a suitable regularisation parameter. Nevertheless, we
concentrate here on demonstrating the potential of the pro-
posed framework and in order to illustrate the importance of
this choice we present results with too small and too large
value of the regularisation parameter α in Figure 2 and 3.

The total reconstruction times for the Cauchy prior range
between 1 and 8 minutes. For the TV prior this increases to 5
to 16 minutes. In our observations, this indicates that conver-
gence to the MAP estimate of the hyperparameters is harder
to achieve with the TV prior which is likely due to the non-
differentiability of the Laplace probability density function.
In the following we will qualitatively and quantitatively eval-
uate the performance of the proposed model.

3.1. Comparison to stationary Gaussian Process model

To demonstrate the effectiveness of the non-stationary covari-
ance function, we also present results using a stationary co-
variance function. This means that the length scaling `(·) in
expression (4) is reduced to a scalar. This kind of a model is
easier and faster to use but overfits if the length-scale is too
low and oversmooths the edges when it is too high. We fit the
model similarly to the non-stationary model, optimising the
hyperparameters and using the expression (8) to reconstruct
the signal.
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Fig. 2: Results with the Cauchy difference prior for 1% noise
and τ = 0.25 with different values of α indicated on top of
the figures. Additionally, we present the estimated parameter
τ̂ for each case. Top row: reconstruction of the unknown
signal f . Bottom row: estimates of the logarithmic length-
scale function.
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Fig. 3: Results with the TV prior for 1% noise and τ = 0.25
with different values of α indicated on top of the figures. Ad-
ditionally, we present the estimated parameter τ̂ for each case.
Top row: reconstruction of the unknown signal f . Bottom
row: estimates of the logarithmic length-scale function.

4. DISCUSSION

Let us first discuss the visual performance of our proposed
method. The reconstructions for the datasets with the Cauchy
difference prior are presented in Figures 2 and 4, for the TV
prior in Figures 3 and 5. In general we can say, that the model
performs excellent in the case with low noise and a narrow
convolution kernel, but it deteriorates clearly for more diffi-
cult cases, as is expected.



With both priors, in the case of the convolution kernel
with τ = 0.25, 1% noise, and an optimal choice of regu-
larisation parameter, we are able to estimate the convolution
kernel with a slight offset as τ̂ = 0.24 for the Cauchy prior
and τ̂ = 0.23 for the TV prior. The reconstructed signals,
shown in Figure 2 for the Cauchy prior and Figure 3 for the
TV prior, successfully recover the varying characteristics of
the unknown. The smooth parts are nicely recovered, as well
as the linear ramp and the spike. The behaviour of the length-
scale estimates is as desired, since they descend rapidly to re-
cover the sharp edges and ascends for the smoother parts. We
can see that in the case of the TV prior, we get more piece-
wise constant estimates than in the Cauchy case, which is typ-
ical for TV priors. This indicates, that the Cauchy prior is bet-
ter suitable to recover the smoother parts of the signal as it is
more flexible with respect to varying length-scales, whereas
for the TV prior the changes are more sudden and hence does
not favour smooth changes in the length-scale. Overall, we
can say that the performance is excellent for this case.

For the data with higher noise and wider convolution ker-
nel results deteriorate clearly, as shown in Figure 4 and 5. If
we only increase the noise to 5%, reconstruction results are
still comparably good and in particular, our model is able to
estimate the convolution parameter with τ̂ = 0.22 for both
prior models. Consequently, features of the ground-truth sig-
nal are still rather well preserved in the reconstructions. For
the wider convolution kernel with τ = 0.5, our model has dif-
ficulties to overcome the loss of information with any choice
of the regularisation parameter and the estimates of the con-
volution kernel become less accurate. For lower noise, the
Cauchy prior performs slightly better, as it can still capture
the changing regularity in the signal. For 5% noise, both pri-
ors tend to provide too smooth reconstructions and are not
able to estimate the length-scales properly anymore.

For comparison, results for the stationary Gaussian pro-
cess are presented in Figure 6 for the data with 1% noise
and τ = 0.25. Too short length-scale overfits the noise and
too long length-scale oversmooths the edges. The optimal
length-scale is a compromise between edgy and smooth fea-
tures. The edges are somewhat smoothed out and the constant
and linear parts are reconstructed as wavy. Hence, adaptive
length-scaling is clearly beneficial for this kind of signal. The
convolution kernel width is estimated correctly as τ̂ = 0.25.

Finally, we present quantitative values in Table 1 mea-
sured as relative MSE, which confirm the visual results that
the Cauchy prior does perform generally better to recover the
true signal. For τ = 0.25 both methods do perform well in
recovering the unknown signal with a relative reconstruction
error of less than 5% for the low noise case and slightly higher
values for the high noise case. These values considerably de-
crease for the wider convolution kernel, confirming our visual
evaluation. Here, the influence of noise amplitude has a much
larger impact on the reconstruction quality. Finally, we note
that the relative MSE for the stationary Gaussian process re-

0 2 4 6 8 10

−
0.

5
0.

5
1.

5

α  =  1.45   τ̂  =  0.22

A

0 2 4 6 8 10

−
1.

0
0.

0
1.

0
2.

0

α  =  1.45   τ̂  =  0.53

B

0 2 4 6 8 10

−
1

0
1

2

α  =  0.5   τ̂  =  0.51

C

0 2 4 6 8 10

−
2.

0
−

1.
0

0.
0

1.
0

l

0 2 4 6 8 10

−
2

−
1

0
1

2

l

0 2 4 6 8 10

−
1.

2
−

0.
8

−
0.

4
0.

0

l

Fig. 4: Estimates of f with the with Cauchy difference prior
for the simulations with A: 5% noise and τ = 0.25, B: 1%
noise and τ = 0.5 and C: 5% noise and τ = 0.5 . Bottom:
estimates of the corresponding logarithmic length-scale func-
tion.

Table 1: Quantitative measures for the obtained reconstruc-
tions in relative MSE (in %) with respect to the ground-truth
f for all cases under considerations and an optimal choice of
regularisation parameter.

Cauchy prior
τ

Noise σ2 0.25 0.5

1% 3.8% 10.9%
5% 6.1% 16.9%

TV prior
τ

Noise σ2 0.25 0.5

1% 4.0% 12.9%
5% 7.0% 16.7%

construction, with only 1% noise, is 6.1% which is clearly
larger than for the non-stationary Gaussian process.

5. CONCLUSION

In this work we have discussed the possibility to perform
blind deconvolution of a measured signal with varying regu-
larity. In the presented model, we assume a parameter depen-
dency of the convolution kernel, which then can be estimated
jointly with a non-stationary length-scale function to enable
reconstructions of varying regularity.

We evaluated the performance of the proposed framework
on a series of experiments with increasing ill-posedness and
showed that we are able to successfully estimate the convo-
lution kernel from the measured data only. The estimated
length-scale function is capable to adjust to the different fea-
tures in the ground-truth signal, from smooth to linear and
constant parts. Thus, we can recover signals of varying reg-
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Fig. 5: Estimates of f with the with TV prior for the sim-
ulations with A: 5% noise and τ = 0.25, B: 1% noise and
τ = 0.5 and C: 5% noise and τ = 0.5 . Bottom: estimates of
the corresponding logarithmic length-scale function.
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Fig. 6: Estimates of f with a stationary Gaussian process for
the data with 1% noise and τ = 0.25 with too short (left),
optimal (middle) and too long (right) length-scaling.

ularity with one prior only. We observed, that the Cauchy
difference prior performs better in our experiments, than the
TV prior. Nevertheless, both priors were not able to recover a
meaningful signal anymore from strongly convolved and high
noise signals. More work needs to be done in this case to
compensate for such extreme scenarios.

As the computation of solutions is optimisation based, the
proposed methodology should be directly applicable to high-
dimensional data-intensive machine learning problems, but
also to spatial statistics and inverse problems with large pa-
rameter space, such as in imaging applications. In future stud-
ies, the applicability to uncertainty quantification, in the sense
of [9], should also be carried out while maintaining computa-
tional efficiency.
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